airbyte.caches.base

SQL Cache implementation.

  1# Copyright (c) 2023 Airbyte, Inc., all rights reserved.
  2"""SQL Cache implementation."""
  3
  4from __future__ import annotations
  5
  6from pathlib import Path
  7from typing import IO, TYPE_CHECKING, Any, final
  8
  9import pandas as pd
 10import pyarrow as pa
 11import pyarrow.dataset as ds
 12from pydantic import Field, PrivateAttr
 13from sqlalchemy import text
 14
 15from airbyte_protocol.models import ConfiguredAirbyteCatalog
 16
 17from airbyte import constants
 18from airbyte._writers.base import AirbyteWriterInterface
 19from airbyte.caches._catalog_backend import CatalogBackendBase, SqlCatalogBackend
 20from airbyte.caches._state_backend import SqlStateBackend
 21from airbyte.constants import DEFAULT_ARROW_MAX_CHUNK_SIZE, TEMP_FILE_CLEANUP
 22from airbyte.datasets._sql import CachedDataset
 23from airbyte.shared.catalog_providers import CatalogProvider
 24from airbyte.shared.sql_processor import SqlConfig
 25from airbyte.shared.state_writers import StdOutStateWriter
 26
 27
 28if TYPE_CHECKING:
 29    from collections.abc import Iterator
 30
 31    from airbyte._message_iterators import AirbyteMessageIterator
 32    from airbyte.caches._state_backend_base import StateBackendBase
 33    from airbyte.datasets._base import DatasetBase
 34    from airbyte.progress import ProgressTracker
 35    from airbyte.shared.sql_processor import SqlProcessorBase
 36    from airbyte.shared.state_providers import StateProviderBase
 37    from airbyte.shared.state_writers import StateWriterBase
 38    from airbyte.strategies import WriteStrategy
 39
 40
 41class CacheBase(SqlConfig, AirbyteWriterInterface):
 42    """Base configuration for a cache.
 43
 44    Caches inherit from the matching `SqlConfig` class, which provides the SQL config settings
 45    and basic connectivity to the SQL database.
 46
 47    The cache is responsible for managing the state of the data synced to the cache, including the
 48    stream catalog and stream state. The cache also provides the mechanism to read and write data
 49    to the SQL backend specified in the `SqlConfig` class.
 50    """
 51
 52    cache_dir: Path = Field(default=Path(constants.DEFAULT_CACHE_ROOT))
 53    """The directory to store the cache in."""
 54
 55    cleanup: bool = TEMP_FILE_CLEANUP
 56    """Whether to clean up the cache after use."""
 57
 58    _name: str = PrivateAttr()
 59
 60    _deployed_api_root: str | None = PrivateAttr(default=None)
 61    _deployed_workspace_id: str | None = PrivateAttr(default=None)
 62    _deployed_destination_id: str | None = PrivateAttr(default=None)
 63
 64    _sql_processor_class: type[SqlProcessorBase] = PrivateAttr()
 65    _read_processor: SqlProcessorBase = PrivateAttr()
 66
 67    _catalog_backend: CatalogBackendBase = PrivateAttr()
 68    _state_backend: StateBackendBase = PrivateAttr()
 69
 70    def __init__(self, **data: Any) -> None:  # noqa: ANN401
 71        """Initialize the cache and backends."""
 72        super().__init__(**data)
 73
 74        # Create a temporary processor to do the work of ensuring the schema exists
 75        temp_processor = self._sql_processor_class(
 76            sql_config=self,
 77            catalog_provider=CatalogProvider(ConfiguredAirbyteCatalog(streams=[])),
 78            state_writer=StdOutStateWriter(),
 79            temp_dir=self.cache_dir,
 80            temp_file_cleanup=self.cleanup,
 81        )
 82        temp_processor._ensure_schema_exists()  # noqa: SLF001  # Accessing non-public member
 83
 84        # Initialize the catalog and state backends
 85        self._catalog_backend = SqlCatalogBackend(
 86            engine=self.get_sql_engine(),
 87            table_prefix=self.table_prefix or "",
 88        )
 89        self._state_backend = SqlStateBackend(
 90            engine=self.get_sql_engine(),
 91            table_prefix=self.table_prefix or "",
 92        )
 93
 94        # Now we can create the SQL read processor
 95        self._read_processor = self._sql_processor_class(
 96            sql_config=self,
 97            catalog_provider=self._catalog_backend.get_full_catalog_provider(),
 98            state_writer=StdOutStateWriter(),  # Shouldn't be needed for the read-only processor
 99            temp_dir=self.cache_dir,
100            temp_file_cleanup=self.cleanup,
101        )
102
103    @property
104    def config_hash(self) -> str | None:
105        """Return a hash of the cache configuration.
106
107        This is the same as the SQLConfig hash from the superclass.
108        """
109        return super(SqlConfig, self).config_hash
110
111    def execute_sql(self, sql: str | list[str]) -> None:
112        """Execute one or more SQL statements against the cache's SQL backend.
113
114        If multiple SQL statements are given, they are executed in order,
115        within the same transaction.
116
117        This method is useful for creating tables, indexes, and other
118        schema objects in the cache. It does not return any results and it
119        automatically closes the connection after executing all statements.
120
121        This method is not intended for querying data. For that, use the `get_records`
122        method - or for a low-level interface, use the `get_sql_engine` method.
123
124        If any of the statements fail, the transaction is canceled and an exception
125        is raised. Most databases will rollback the transaction in this case.
126        """
127        if isinstance(sql, str):
128            # Coerce to a list if a single string is given
129            sql = [sql]
130
131        with self.processor.get_sql_connection() as connection:
132            for sql_statement in sql:
133                connection.execute(text(sql_statement))
134
135    @final
136    @property
137    def processor(self) -> SqlProcessorBase:
138        """Return the SQL processor instance."""
139        return self._read_processor
140
141    def get_record_processor(
142        self,
143        source_name: str,
144        catalog_provider: CatalogProvider,
145        state_writer: StateWriterBase | None = None,
146    ) -> SqlProcessorBase:
147        """Return a record processor for the specified source name and catalog.
148
149        We first register the source and its catalog with the catalog manager. Then we create a new
150        SQL processor instance with (only) the given input catalog.
151
152        For the state writer, we use a state writer which stores state in an internal SQL table.
153        """
154        # First register the source and catalog into durable storage. This is necessary to ensure
155        # that we can later retrieve the catalog information.
156        self.register_source(
157            source_name=source_name,
158            incoming_source_catalog=catalog_provider.configured_catalog,
159            stream_names=set(catalog_provider.stream_names),
160        )
161
162        # Next create a new SQL processor instance with the given catalog - and a state writer
163        # that writes state to the internal SQL table and associates with the given source name.
164        return self._sql_processor_class(
165            sql_config=self,
166            catalog_provider=catalog_provider,
167            state_writer=state_writer or self.get_state_writer(source_name=source_name),
168            temp_dir=self.cache_dir,
169            temp_file_cleanup=self.cleanup,
170        )
171
172    # Read methods:
173
174    def get_records(
175        self,
176        stream_name: str,
177    ) -> CachedDataset:
178        """Uses SQLAlchemy to select all rows from the table."""
179        return CachedDataset(self, stream_name)
180
181    def get_pandas_dataframe(
182        self,
183        stream_name: str,
184    ) -> pd.DataFrame:
185        """Return a Pandas data frame with the stream's data."""
186        table_name = self._read_processor.get_sql_table_name(stream_name)
187        engine = self.get_sql_engine()
188        return pd.read_sql_table(table_name, engine, schema=self.schema_name)
189
190    def get_arrow_dataset(
191        self,
192        stream_name: str,
193        *,
194        max_chunk_size: int = DEFAULT_ARROW_MAX_CHUNK_SIZE,
195    ) -> ds.Dataset:
196        """Return an Arrow Dataset with the stream's data."""
197        table_name = self._read_processor.get_sql_table_name(stream_name)
198        engine = self.get_sql_engine()
199
200        # Read the table in chunks to handle large tables which does not fits in memory
201        pandas_chunks = pd.read_sql_table(
202            table_name=table_name,
203            con=engine,
204            schema=self.schema_name,
205            chunksize=max_chunk_size,
206        )
207
208        arrow_batches_list = []
209        arrow_schema = None
210
211        for pandas_chunk in pandas_chunks:
212            if arrow_schema is None:
213                # Initialize the schema with the first chunk
214                arrow_schema = pa.Schema.from_pandas(pandas_chunk)
215
216            # Convert each pandas chunk to an Arrow Table
217            arrow_table = pa.RecordBatch.from_pandas(pandas_chunk, schema=arrow_schema)
218            arrow_batches_list.append(arrow_table)
219
220        return ds.dataset(arrow_batches_list)
221
222    @final
223    @property
224    def streams(self) -> dict[str, CachedDataset]:
225        """Return a temporary table name."""
226        result = {}
227        stream_names = set(self._catalog_backend.stream_names)
228
229        for stream_name in stream_names:
230            result[stream_name] = CachedDataset(self, stream_name)
231
232        return result
233
234    def get_state_provider(
235        self,
236        source_name: str,
237        *,
238        refresh: bool = True,
239        destination_name: str | None = None,
240    ) -> StateProviderBase:
241        """Return a state provider for the specified source name."""
242        return self._state_backend.get_state_provider(
243            source_name=source_name,
244            table_prefix=self.table_prefix or "",
245            refresh=refresh,
246            destination_name=destination_name,
247        )
248
249    def get_state_writer(
250        self,
251        source_name: str,
252        destination_name: str | None = None,
253    ) -> StateWriterBase:
254        """Return a state writer for the specified source name.
255
256        If syncing to the cache, `destination_name` should be `None`.
257        If syncing to a destination, `destination_name` should be the destination name.
258        """
259        return self._state_backend.get_state_writer(
260            source_name=source_name,
261            destination_name=destination_name,
262        )
263
264    def register_source(
265        self,
266        source_name: str,
267        incoming_source_catalog: ConfiguredAirbyteCatalog,
268        stream_names: set[str],
269    ) -> None:
270        """Register the source name and catalog."""
271        self._catalog_backend.register_source(
272            source_name=source_name,
273            incoming_source_catalog=incoming_source_catalog,
274            incoming_stream_names=stream_names,
275        )
276
277    def __getitem__(self, stream: str) -> DatasetBase:
278        """Return a dataset by stream name."""
279        return self.streams[stream]
280
281    def __contains__(self, stream: str) -> bool:
282        """Return whether a stream is in the cache."""
283        return stream in (self._catalog_backend.stream_names)
284
285    def __iter__(  # type: ignore [override]  # Overriding Pydantic model method
286        self,
287    ) -> Iterator[tuple[str, Any]]:
288        """Iterate over the streams in the cache."""
289        return ((name, dataset) for name, dataset in self.streams.items())
290
291    def _write_airbyte_message_stream(
292        self,
293        stdin: IO[str] | AirbyteMessageIterator,
294        *,
295        catalog_provider: CatalogProvider,
296        write_strategy: WriteStrategy,
297        state_writer: StateWriterBase | None = None,
298        progress_tracker: ProgressTracker,
299    ) -> None:
300        """Read from the connector and write to the cache."""
301        cache_processor = self.get_record_processor(
302            source_name=self.name,
303            catalog_provider=catalog_provider,
304            state_writer=state_writer,
305        )
306        cache_processor.process_airbyte_messages(
307            messages=stdin,
308            write_strategy=write_strategy,
309            progress_tracker=progress_tracker,
310        )
311        progress_tracker.log_cache_processing_complete()
class CacheBase(airbyte.shared.sql_processor.SqlConfig, airbyte._writers.base.AirbyteWriterInterface):
 42class CacheBase(SqlConfig, AirbyteWriterInterface):
 43    """Base configuration for a cache.
 44
 45    Caches inherit from the matching `SqlConfig` class, which provides the SQL config settings
 46    and basic connectivity to the SQL database.
 47
 48    The cache is responsible for managing the state of the data synced to the cache, including the
 49    stream catalog and stream state. The cache also provides the mechanism to read and write data
 50    to the SQL backend specified in the `SqlConfig` class.
 51    """
 52
 53    cache_dir: Path = Field(default=Path(constants.DEFAULT_CACHE_ROOT))
 54    """The directory to store the cache in."""
 55
 56    cleanup: bool = TEMP_FILE_CLEANUP
 57    """Whether to clean up the cache after use."""
 58
 59    _name: str = PrivateAttr()
 60
 61    _deployed_api_root: str | None = PrivateAttr(default=None)
 62    _deployed_workspace_id: str | None = PrivateAttr(default=None)
 63    _deployed_destination_id: str | None = PrivateAttr(default=None)
 64
 65    _sql_processor_class: type[SqlProcessorBase] = PrivateAttr()
 66    _read_processor: SqlProcessorBase = PrivateAttr()
 67
 68    _catalog_backend: CatalogBackendBase = PrivateAttr()
 69    _state_backend: StateBackendBase = PrivateAttr()
 70
 71    def __init__(self, **data: Any) -> None:  # noqa: ANN401
 72        """Initialize the cache and backends."""
 73        super().__init__(**data)
 74
 75        # Create a temporary processor to do the work of ensuring the schema exists
 76        temp_processor = self._sql_processor_class(
 77            sql_config=self,
 78            catalog_provider=CatalogProvider(ConfiguredAirbyteCatalog(streams=[])),
 79            state_writer=StdOutStateWriter(),
 80            temp_dir=self.cache_dir,
 81            temp_file_cleanup=self.cleanup,
 82        )
 83        temp_processor._ensure_schema_exists()  # noqa: SLF001  # Accessing non-public member
 84
 85        # Initialize the catalog and state backends
 86        self._catalog_backend = SqlCatalogBackend(
 87            engine=self.get_sql_engine(),
 88            table_prefix=self.table_prefix or "",
 89        )
 90        self._state_backend = SqlStateBackend(
 91            engine=self.get_sql_engine(),
 92            table_prefix=self.table_prefix or "",
 93        )
 94
 95        # Now we can create the SQL read processor
 96        self._read_processor = self._sql_processor_class(
 97            sql_config=self,
 98            catalog_provider=self._catalog_backend.get_full_catalog_provider(),
 99            state_writer=StdOutStateWriter(),  # Shouldn't be needed for the read-only processor
100            temp_dir=self.cache_dir,
101            temp_file_cleanup=self.cleanup,
102        )
103
104    @property
105    def config_hash(self) -> str | None:
106        """Return a hash of the cache configuration.
107
108        This is the same as the SQLConfig hash from the superclass.
109        """
110        return super(SqlConfig, self).config_hash
111
112    def execute_sql(self, sql: str | list[str]) -> None:
113        """Execute one or more SQL statements against the cache's SQL backend.
114
115        If multiple SQL statements are given, they are executed in order,
116        within the same transaction.
117
118        This method is useful for creating tables, indexes, and other
119        schema objects in the cache. It does not return any results and it
120        automatically closes the connection after executing all statements.
121
122        This method is not intended for querying data. For that, use the `get_records`
123        method - or for a low-level interface, use the `get_sql_engine` method.
124
125        If any of the statements fail, the transaction is canceled and an exception
126        is raised. Most databases will rollback the transaction in this case.
127        """
128        if isinstance(sql, str):
129            # Coerce to a list if a single string is given
130            sql = [sql]
131
132        with self.processor.get_sql_connection() as connection:
133            for sql_statement in sql:
134                connection.execute(text(sql_statement))
135
136    @final
137    @property
138    def processor(self) -> SqlProcessorBase:
139        """Return the SQL processor instance."""
140        return self._read_processor
141
142    def get_record_processor(
143        self,
144        source_name: str,
145        catalog_provider: CatalogProvider,
146        state_writer: StateWriterBase | None = None,
147    ) -> SqlProcessorBase:
148        """Return a record processor for the specified source name and catalog.
149
150        We first register the source and its catalog with the catalog manager. Then we create a new
151        SQL processor instance with (only) the given input catalog.
152
153        For the state writer, we use a state writer which stores state in an internal SQL table.
154        """
155        # First register the source and catalog into durable storage. This is necessary to ensure
156        # that we can later retrieve the catalog information.
157        self.register_source(
158            source_name=source_name,
159            incoming_source_catalog=catalog_provider.configured_catalog,
160            stream_names=set(catalog_provider.stream_names),
161        )
162
163        # Next create a new SQL processor instance with the given catalog - and a state writer
164        # that writes state to the internal SQL table and associates with the given source name.
165        return self._sql_processor_class(
166            sql_config=self,
167            catalog_provider=catalog_provider,
168            state_writer=state_writer or self.get_state_writer(source_name=source_name),
169            temp_dir=self.cache_dir,
170            temp_file_cleanup=self.cleanup,
171        )
172
173    # Read methods:
174
175    def get_records(
176        self,
177        stream_name: str,
178    ) -> CachedDataset:
179        """Uses SQLAlchemy to select all rows from the table."""
180        return CachedDataset(self, stream_name)
181
182    def get_pandas_dataframe(
183        self,
184        stream_name: str,
185    ) -> pd.DataFrame:
186        """Return a Pandas data frame with the stream's data."""
187        table_name = self._read_processor.get_sql_table_name(stream_name)
188        engine = self.get_sql_engine()
189        return pd.read_sql_table(table_name, engine, schema=self.schema_name)
190
191    def get_arrow_dataset(
192        self,
193        stream_name: str,
194        *,
195        max_chunk_size: int = DEFAULT_ARROW_MAX_CHUNK_SIZE,
196    ) -> ds.Dataset:
197        """Return an Arrow Dataset with the stream's data."""
198        table_name = self._read_processor.get_sql_table_name(stream_name)
199        engine = self.get_sql_engine()
200
201        # Read the table in chunks to handle large tables which does not fits in memory
202        pandas_chunks = pd.read_sql_table(
203            table_name=table_name,
204            con=engine,
205            schema=self.schema_name,
206            chunksize=max_chunk_size,
207        )
208
209        arrow_batches_list = []
210        arrow_schema = None
211
212        for pandas_chunk in pandas_chunks:
213            if arrow_schema is None:
214                # Initialize the schema with the first chunk
215                arrow_schema = pa.Schema.from_pandas(pandas_chunk)
216
217            # Convert each pandas chunk to an Arrow Table
218            arrow_table = pa.RecordBatch.from_pandas(pandas_chunk, schema=arrow_schema)
219            arrow_batches_list.append(arrow_table)
220
221        return ds.dataset(arrow_batches_list)
222
223    @final
224    @property
225    def streams(self) -> dict[str, CachedDataset]:
226        """Return a temporary table name."""
227        result = {}
228        stream_names = set(self._catalog_backend.stream_names)
229
230        for stream_name in stream_names:
231            result[stream_name] = CachedDataset(self, stream_name)
232
233        return result
234
235    def get_state_provider(
236        self,
237        source_name: str,
238        *,
239        refresh: bool = True,
240        destination_name: str | None = None,
241    ) -> StateProviderBase:
242        """Return a state provider for the specified source name."""
243        return self._state_backend.get_state_provider(
244            source_name=source_name,
245            table_prefix=self.table_prefix or "",
246            refresh=refresh,
247            destination_name=destination_name,
248        )
249
250    def get_state_writer(
251        self,
252        source_name: str,
253        destination_name: str | None = None,
254    ) -> StateWriterBase:
255        """Return a state writer for the specified source name.
256
257        If syncing to the cache, `destination_name` should be `None`.
258        If syncing to a destination, `destination_name` should be the destination name.
259        """
260        return self._state_backend.get_state_writer(
261            source_name=source_name,
262            destination_name=destination_name,
263        )
264
265    def register_source(
266        self,
267        source_name: str,
268        incoming_source_catalog: ConfiguredAirbyteCatalog,
269        stream_names: set[str],
270    ) -> None:
271        """Register the source name and catalog."""
272        self._catalog_backend.register_source(
273            source_name=source_name,
274            incoming_source_catalog=incoming_source_catalog,
275            incoming_stream_names=stream_names,
276        )
277
278    def __getitem__(self, stream: str) -> DatasetBase:
279        """Return a dataset by stream name."""
280        return self.streams[stream]
281
282    def __contains__(self, stream: str) -> bool:
283        """Return whether a stream is in the cache."""
284        return stream in (self._catalog_backend.stream_names)
285
286    def __iter__(  # type: ignore [override]  # Overriding Pydantic model method
287        self,
288    ) -> Iterator[tuple[str, Any]]:
289        """Iterate over the streams in the cache."""
290        return ((name, dataset) for name, dataset in self.streams.items())
291
292    def _write_airbyte_message_stream(
293        self,
294        stdin: IO[str] | AirbyteMessageIterator,
295        *,
296        catalog_provider: CatalogProvider,
297        write_strategy: WriteStrategy,
298        state_writer: StateWriterBase | None = None,
299        progress_tracker: ProgressTracker,
300    ) -> None:
301        """Read from the connector and write to the cache."""
302        cache_processor = self.get_record_processor(
303            source_name=self.name,
304            catalog_provider=catalog_provider,
305            state_writer=state_writer,
306        )
307        cache_processor.process_airbyte_messages(
308            messages=stdin,
309            write_strategy=write_strategy,
310            progress_tracker=progress_tracker,
311        )
312        progress_tracker.log_cache_processing_complete()

Base configuration for a cache.

Caches inherit from the matching SqlConfig class, which provides the SQL config settings and basic connectivity to the SQL database.

The cache is responsible for managing the state of the data synced to the cache, including the stream catalog and stream state. The cache also provides the mechanism to read and write data to the SQL backend specified in the SqlConfig class.

CacheBase(**data: Any)
 71    def __init__(self, **data: Any) -> None:  # noqa: ANN401
 72        """Initialize the cache and backends."""
 73        super().__init__(**data)
 74
 75        # Create a temporary processor to do the work of ensuring the schema exists
 76        temp_processor = self._sql_processor_class(
 77            sql_config=self,
 78            catalog_provider=CatalogProvider(ConfiguredAirbyteCatalog(streams=[])),
 79            state_writer=StdOutStateWriter(),
 80            temp_dir=self.cache_dir,
 81            temp_file_cleanup=self.cleanup,
 82        )
 83        temp_processor._ensure_schema_exists()  # noqa: SLF001  # Accessing non-public member
 84
 85        # Initialize the catalog and state backends
 86        self._catalog_backend = SqlCatalogBackend(
 87            engine=self.get_sql_engine(),
 88            table_prefix=self.table_prefix or "",
 89        )
 90        self._state_backend = SqlStateBackend(
 91            engine=self.get_sql_engine(),
 92            table_prefix=self.table_prefix or "",
 93        )
 94
 95        # Now we can create the SQL read processor
 96        self._read_processor = self._sql_processor_class(
 97            sql_config=self,
 98            catalog_provider=self._catalog_backend.get_full_catalog_provider(),
 99            state_writer=StdOutStateWriter(),  # Shouldn't be needed for the read-only processor
100            temp_dir=self.cache_dir,
101            temp_file_cleanup=self.cleanup,
102        )

Initialize the cache and backends.

cache_dir: pathlib.Path

The directory to store the cache in.

cleanup: bool

Whether to clean up the cache after use.

config_hash: str | None
104    @property
105    def config_hash(self) -> str | None:
106        """Return a hash of the cache configuration.
107
108        This is the same as the SQLConfig hash from the superclass.
109        """
110        return super(SqlConfig, self).config_hash

Return a hash of the cache configuration.

This is the same as the SQLConfig hash from the superclass.

def execute_sql(self, sql: str | list[str]) -> None:
112    def execute_sql(self, sql: str | list[str]) -> None:
113        """Execute one or more SQL statements against the cache's SQL backend.
114
115        If multiple SQL statements are given, they are executed in order,
116        within the same transaction.
117
118        This method is useful for creating tables, indexes, and other
119        schema objects in the cache. It does not return any results and it
120        automatically closes the connection after executing all statements.
121
122        This method is not intended for querying data. For that, use the `get_records`
123        method - or for a low-level interface, use the `get_sql_engine` method.
124
125        If any of the statements fail, the transaction is canceled and an exception
126        is raised. Most databases will rollback the transaction in this case.
127        """
128        if isinstance(sql, str):
129            # Coerce to a list if a single string is given
130            sql = [sql]
131
132        with self.processor.get_sql_connection() as connection:
133            for sql_statement in sql:
134                connection.execute(text(sql_statement))

Execute one or more SQL statements against the cache's SQL backend.

If multiple SQL statements are given, they are executed in order, within the same transaction.

This method is useful for creating tables, indexes, and other schema objects in the cache. It does not return any results and it automatically closes the connection after executing all statements.

This method is not intended for querying data. For that, use the get_records method - or for a low-level interface, use the get_sql_engine method.

If any of the statements fail, the transaction is canceled and an exception is raised. Most databases will rollback the transaction in this case.

processor: airbyte.shared.sql_processor.SqlProcessorBase
136    @final
137    @property
138    def processor(self) -> SqlProcessorBase:
139        """Return the SQL processor instance."""
140        return self._read_processor

Return the SQL processor instance.

def get_record_processor( self, source_name: str, catalog_provider: airbyte.shared.catalog_providers.CatalogProvider, state_writer: airbyte.shared.state_writers.StateWriterBase | None = None) -> airbyte.shared.sql_processor.SqlProcessorBase:
142    def get_record_processor(
143        self,
144        source_name: str,
145        catalog_provider: CatalogProvider,
146        state_writer: StateWriterBase | None = None,
147    ) -> SqlProcessorBase:
148        """Return a record processor for the specified source name and catalog.
149
150        We first register the source and its catalog with the catalog manager. Then we create a new
151        SQL processor instance with (only) the given input catalog.
152
153        For the state writer, we use a state writer which stores state in an internal SQL table.
154        """
155        # First register the source and catalog into durable storage. This is necessary to ensure
156        # that we can later retrieve the catalog information.
157        self.register_source(
158            source_name=source_name,
159            incoming_source_catalog=catalog_provider.configured_catalog,
160            stream_names=set(catalog_provider.stream_names),
161        )
162
163        # Next create a new SQL processor instance with the given catalog - and a state writer
164        # that writes state to the internal SQL table and associates with the given source name.
165        return self._sql_processor_class(
166            sql_config=self,
167            catalog_provider=catalog_provider,
168            state_writer=state_writer or self.get_state_writer(source_name=source_name),
169            temp_dir=self.cache_dir,
170            temp_file_cleanup=self.cleanup,
171        )

Return a record processor for the specified source name and catalog.

We first register the source and its catalog with the catalog manager. Then we create a new SQL processor instance with (only) the given input catalog.

For the state writer, we use a state writer which stores state in an internal SQL table.

def get_records(self, stream_name: str) -> airbyte.CachedDataset:
175    def get_records(
176        self,
177        stream_name: str,
178    ) -> CachedDataset:
179        """Uses SQLAlchemy to select all rows from the table."""
180        return CachedDataset(self, stream_name)

Uses SQLAlchemy to select all rows from the table.

def get_pandas_dataframe(self, stream_name: str) -> pandas.core.frame.DataFrame:
182    def get_pandas_dataframe(
183        self,
184        stream_name: str,
185    ) -> pd.DataFrame:
186        """Return a Pandas data frame with the stream's data."""
187        table_name = self._read_processor.get_sql_table_name(stream_name)
188        engine = self.get_sql_engine()
189        return pd.read_sql_table(table_name, engine, schema=self.schema_name)

Return a Pandas data frame with the stream's data.

def get_arrow_dataset( self, stream_name: str, *, max_chunk_size: int = 100000) -> pyarrow._dataset.Dataset:
191    def get_arrow_dataset(
192        self,
193        stream_name: str,
194        *,
195        max_chunk_size: int = DEFAULT_ARROW_MAX_CHUNK_SIZE,
196    ) -> ds.Dataset:
197        """Return an Arrow Dataset with the stream's data."""
198        table_name = self._read_processor.get_sql_table_name(stream_name)
199        engine = self.get_sql_engine()
200
201        # Read the table in chunks to handle large tables which does not fits in memory
202        pandas_chunks = pd.read_sql_table(
203            table_name=table_name,
204            con=engine,
205            schema=self.schema_name,
206            chunksize=max_chunk_size,
207        )
208
209        arrow_batches_list = []
210        arrow_schema = None
211
212        for pandas_chunk in pandas_chunks:
213            if arrow_schema is None:
214                # Initialize the schema with the first chunk
215                arrow_schema = pa.Schema.from_pandas(pandas_chunk)
216
217            # Convert each pandas chunk to an Arrow Table
218            arrow_table = pa.RecordBatch.from_pandas(pandas_chunk, schema=arrow_schema)
219            arrow_batches_list.append(arrow_table)
220
221        return ds.dataset(arrow_batches_list)

Return an Arrow Dataset with the stream's data.

streams: dict[str, airbyte.CachedDataset]
223    @final
224    @property
225    def streams(self) -> dict[str, CachedDataset]:
226        """Return a temporary table name."""
227        result = {}
228        stream_names = set(self._catalog_backend.stream_names)
229
230        for stream_name in stream_names:
231            result[stream_name] = CachedDataset(self, stream_name)
232
233        return result

Return a temporary table name.

def get_state_provider( self, source_name: str, *, refresh: bool = True, destination_name: str | None = None) -> airbyte.shared.state_providers.StateProviderBase:
235    def get_state_provider(
236        self,
237        source_name: str,
238        *,
239        refresh: bool = True,
240        destination_name: str | None = None,
241    ) -> StateProviderBase:
242        """Return a state provider for the specified source name."""
243        return self._state_backend.get_state_provider(
244            source_name=source_name,
245            table_prefix=self.table_prefix or "",
246            refresh=refresh,
247            destination_name=destination_name,
248        )

Return a state provider for the specified source name.

def get_state_writer( self, source_name: str, destination_name: str | None = None) -> airbyte.shared.state_writers.StateWriterBase:
250    def get_state_writer(
251        self,
252        source_name: str,
253        destination_name: str | None = None,
254    ) -> StateWriterBase:
255        """Return a state writer for the specified source name.
256
257        If syncing to the cache, `destination_name` should be `None`.
258        If syncing to a destination, `destination_name` should be the destination name.
259        """
260        return self._state_backend.get_state_writer(
261            source_name=source_name,
262            destination_name=destination_name,
263        )

Return a state writer for the specified source name.

If syncing to the cache, destination_name should be None. If syncing to a destination, destination_name should be the destination name.

def register_source( self, source_name: str, incoming_source_catalog: airbyte_protocol.models.airbyte_protocol.ConfiguredAirbyteCatalog, stream_names: set[str]) -> None:
265    def register_source(
266        self,
267        source_name: str,
268        incoming_source_catalog: ConfiguredAirbyteCatalog,
269        stream_names: set[str],
270    ) -> None:
271        """Register the source name and catalog."""
272        self._catalog_backend.register_source(
273            source_name=source_name,
274            incoming_source_catalog=incoming_source_catalog,
275            incoming_stream_names=stream_names,
276        )

Register the source name and catalog.

model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_fields: ClassVar[Dict[str, pydantic.fields.FieldInfo]] = {'schema_name': FieldInfo(annotation=str, required=False, default='airbyte_raw'), 'table_prefix': FieldInfo(annotation=Union[str, NoneType], required=False, default=''), 'cache_dir': FieldInfo(annotation=Path, required=False, default=PosixPath('.cache')), 'cleanup': FieldInfo(annotation=bool, required=False, default=True)}

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

This replaces Model.__fields__ from Pydantic V1.

model_computed_fields: ClassVar[Dict[str, pydantic.fields.ComputedFieldInfo]] = {}

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
306def init_private_attributes(self: BaseModel, context: Any, /) -> None:
307    """This function is meant to behave like a BaseModel method to initialise private attributes.
308
309    It takes context as an argument since that's what pydantic-core passes when calling it.
310
311    Args:
312        self: The BaseModel instance.
313        context: The context.
314    """
315    if getattr(self, '__pydantic_private__', None) is None:
316        pydantic_private = {}
317        for name, private_attr in self.__private_attributes__.items():
318            default = private_attr.get_default()
319            if default is not PydanticUndefined:
320                pydantic_private[name] = default
321        object_setattr(self, '__pydantic_private__', pydantic_private)

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that's what pydantic-core passes when calling it.

Arguments:
  • self: The BaseModel instance.
  • context: The context.
Inherited Members
airbyte.shared.sql_processor.SqlConfig
schema_name
table_prefix
get_sql_alchemy_url
get_database_name
get_create_table_extra_clauses
get_sql_engine
get_vendor_client
pydantic.main.BaseModel
model_extra
model_fields_set
model_construct
model_copy
model_dump
model_dump_json
model_json_schema
model_parametrized_name
model_rebuild
model_validate
model_validate_json
model_validate_strings
dict
json
parse_obj
parse_raw
parse_file
from_orm
construct
copy
schema
schema_json
validate
update_forward_refs
airbyte._writers.base.AirbyteWriterInterface
name