airbyte.caches

Base module for all caches.

 1# Copyright (c) 2023 Airbyte, Inc., all rights reserved.
 2"""Base module for all caches."""
 3
 4from __future__ import annotations
 5
 6from typing import TYPE_CHECKING
 7
 8from airbyte.caches.base import CacheBase
 9from airbyte.caches.bigquery import BigQueryCache
10from airbyte.caches.duckdb import DuckDBCache
11from airbyte.caches.motherduck import MotherDuckCache
12from airbyte.caches.postgres import PostgresCache
13from airbyte.caches.snowflake import SnowflakeCache
14from airbyte.caches.util import get_default_cache, new_local_cache
15
16
17# Submodules imported here for documentation reasons: https://github.com/mitmproxy/pdoc/issues/757
18if TYPE_CHECKING:
19    # ruff: noqa: TC004
20    from airbyte.caches import base, bigquery, duckdb, motherduck, postgres, snowflake, util
21
22# We export these classes for easy access: `airbyte.caches...`
23__all__ = [
24    # Factories
25    "get_default_cache",
26    "new_local_cache",
27    # Classes
28    "BigQueryCache",
29    "CacheBase",
30    "DuckDBCache",
31    "MotherDuckCache",
32    "PostgresCache",
33    "SnowflakeCache",
34    # Submodules,
35    "util",
36    "bigquery",
37    "duckdb",
38    "motherduck",
39    "postgres",
40    "snowflake",
41    "base",
42]
def get_default_cache() -> DuckDBCache:
27def get_default_cache() -> DuckDBCache:
28    """Get a local cache for storing data, using the default database path.
29
30    Cache files are stored in the `.cache` directory, relative to the current
31    working directory.
32    """
33    cache_dir = Path("./.cache/default_cache")
34    return DuckDBCache(
35        db_path=cache_dir / "default_cache.duckdb",
36        cache_dir=cache_dir,
37    )

Get a local cache for storing data, using the default database path.

Cache files are stored in the .cache directory, relative to the current working directory.

def new_local_cache( cache_name: str | None = None, cache_dir: str | pathlib.Path | None = None, *, cleanup: bool = True) -> DuckDBCache:
40def new_local_cache(
41    cache_name: str | None = None,
42    cache_dir: str | Path | None = None,
43    *,
44    cleanup: bool = True,
45) -> DuckDBCache:
46    """Get a local cache for storing data, using a name string to seed the path.
47
48    Args:
49        cache_name: Name to use for the cache. Defaults to None.
50        cache_dir: Root directory to store the cache in. Defaults to None.
51        cleanup: Whether to clean up temporary files. Defaults to True.
52
53    Cache files are stored in the `.cache` directory, relative to the current
54    working directory.
55    """
56    if cache_name:
57        if " " in cache_name:
58            raise exc.PyAirbyteInputError(
59                message="Cache name cannot contain spaces.",
60                input_value=cache_name,
61            )
62
63        if not cache_name.replace("_", "").isalnum():
64            raise exc.PyAirbyteInputError(
65                message="Cache name can only contain alphanumeric characters and underscores.",
66                input_value=cache_name,
67            )
68
69    cache_name = cache_name or str(ulid.ULID())
70    cache_dir = cache_dir or Path(f"./.cache/{cache_name}")
71    if not isinstance(cache_dir, Path):
72        cache_dir = Path(cache_dir)
73
74    return DuckDBCache(
75        db_path=cache_dir / f"db_{cache_name}.duckdb",
76        cache_dir=cache_dir,
77        cleanup=cleanup,
78    )

Get a local cache for storing data, using a name string to seed the path.

Arguments:
  • cache_name: Name to use for the cache. Defaults to None.
  • cache_dir: Root directory to store the cache in. Defaults to None.
  • cleanup: Whether to clean up temporary files. Defaults to True.

Cache files are stored in the .cache directory, relative to the current working directory.

class BigQueryCache(airbyte._processors.sql.bigquery.BigQueryConfig, airbyte.caches.CacheBase):
39class BigQueryCache(BigQueryConfig, CacheBase):
40    """The BigQuery cache implementation."""
41
42    _sql_processor_class: ClassVar[type[SqlProcessorBase]] = BigQuerySqlProcessor
43
44    paired_destination_name: ClassVar[str | None] = "destination-bigquery"
45    paired_destination_config_class: ClassVar[type | None] = DestinationBigquery
46
47    @property
48    def paired_destination_config(self) -> DestinationBigquery:
49        """Return a dictionary of destination configuration values."""
50        return bigquery_cache_to_destination_configuration(cache=self)
51
52    def get_arrow_dataset(
53        self,
54        stream_name: str,
55        *,
56        max_chunk_size: int = DEFAULT_ARROW_MAX_CHUNK_SIZE,
57    ) -> NoReturn:
58        """Raises NotImplementedError; BigQuery doesn't support `pd.read_sql_table`.
59
60        See: https://github.com/airbytehq/PyAirbyte/issues/165
61        """
62        raise NotImplementedError(
63            "BigQuery doesn't currently support to_arrow"
64            "Please consider using a different cache implementation for these functionalities."
65        )

The BigQuery cache implementation.

paired_destination_name: ClassVar[str | None] = 'destination-bigquery'
paired_destination_config_class: ClassVar[type | None] = <class 'airbyte_api.models.destination_bigquery.DestinationBigquery'>
paired_destination_config: airbyte_api.models.destination_bigquery.DestinationBigquery
47    @property
48    def paired_destination_config(self) -> DestinationBigquery:
49        """Return a dictionary of destination configuration values."""
50        return bigquery_cache_to_destination_configuration(cache=self)

Return a dictionary of destination configuration values.

def get_arrow_dataset(self, stream_name: str, *, max_chunk_size: int = 100000) -> NoReturn:
52    def get_arrow_dataset(
53        self,
54        stream_name: str,
55        *,
56        max_chunk_size: int = DEFAULT_ARROW_MAX_CHUNK_SIZE,
57    ) -> NoReturn:
58        """Raises NotImplementedError; BigQuery doesn't support `pd.read_sql_table`.
59
60        See: https://github.com/airbytehq/PyAirbyte/issues/165
61        """
62        raise NotImplementedError(
63            "BigQuery doesn't currently support to_arrow"
64            "Please consider using a different cache implementation for these functionalities."
65        )

Raises NotImplementedError; BigQuery doesn't support pd.read_sql_table.

See: https://github.com/airbytehq/PyAirbyte/issues/165

model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
122                    def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None:
123                        """We need to both initialize private attributes and call the user-defined model_post_init
124                        method.
125                        """
126                        init_private_attributes(self, context)
127                        original_model_post_init(self, context)

We need to both initialize private attributes and call the user-defined model_post_init method.

Inherited Members
CacheBase
CacheBase
cache_dir
cleanup
config_hash
execute_sql
processor
run_sql_query
get_record_processor
get_records
get_pandas_dataframe
streams
get_state_provider
get_state_writer
register_source
create_source_tables
airbyte._processors.sql.bigquery.BigQueryConfig
database_name
schema_name
credentials_path
dataset_location
project_name
dataset_name
get_sql_alchemy_url
get_database_name
get_vendor_client
airbyte.shared.sql_processor.SqlConfig
table_prefix
get_create_table_extra_clauses
get_sql_alchemy_connect_args
get_sql_engine
pydantic.main.BaseModel
model_extra
model_fields_set
model_construct
model_copy
model_dump
model_dump_json
model_json_schema
model_parametrized_name
model_rebuild
model_validate
model_validate_json
model_validate_strings
dict
json
parse_obj
parse_raw
parse_file
from_orm
construct
copy
schema
schema_json
validate
update_forward_refs
model_fields
model_computed_fields
airbyte._writers.base.AirbyteWriterInterface
name
class CacheBase(airbyte.shared.sql_processor.SqlConfig, airbyte._writers.base.AirbyteWriterInterface):
 43class CacheBase(SqlConfig, AirbyteWriterInterface):
 44    """Base configuration for a cache.
 45
 46    Caches inherit from the matching `SqlConfig` class, which provides the SQL config settings
 47    and basic connectivity to the SQL database.
 48
 49    The cache is responsible for managing the state of the data synced to the cache, including the
 50    stream catalog and stream state. The cache also provides the mechanism to read and write data
 51    to the SQL backend specified in the `SqlConfig` class.
 52    """
 53
 54    cache_dir: Path = Field(default=Path(constants.DEFAULT_CACHE_ROOT))
 55    """The directory to store the cache in."""
 56
 57    cleanup: bool = TEMP_FILE_CLEANUP
 58    """Whether to clean up the cache after use."""
 59
 60    _name: str = PrivateAttr()
 61
 62    _sql_processor_class: ClassVar[type[SqlProcessorBase]]
 63    _read_processor: SqlProcessorBase = PrivateAttr()
 64
 65    _catalog_backend: CatalogBackendBase = PrivateAttr()
 66    _state_backend: StateBackendBase = PrivateAttr()
 67
 68    paired_destination_name: ClassVar[str | None] = None
 69    paired_destination_config_class: ClassVar[type | None] = None
 70
 71    @property
 72    def paired_destination_config(self) -> Any | dict[str, Any]:  # noqa: ANN401  # Allow Any return type
 73        """Return a dictionary of destination configuration values."""
 74        raise NotImplementedError(
 75            f"The type '{type(self).__name__}' does not define an equivalent destination "
 76            "configuration."
 77        )
 78
 79    def __init__(self, **data: Any) -> None:  # noqa: ANN401
 80        """Initialize the cache and backends."""
 81        super().__init__(**data)
 82
 83        # Create a temporary processor to do the work of ensuring the schema exists
 84        temp_processor = self._sql_processor_class(
 85            sql_config=self,
 86            catalog_provider=CatalogProvider(ConfiguredAirbyteCatalog(streams=[])),
 87            state_writer=StdOutStateWriter(),
 88            temp_dir=self.cache_dir,
 89            temp_file_cleanup=self.cleanup,
 90        )
 91        temp_processor._ensure_schema_exists()  # noqa: SLF001  # Accessing non-public member
 92
 93        # Initialize the catalog and state backends
 94        self._catalog_backend = SqlCatalogBackend(
 95            sql_config=self,
 96            table_prefix=self.table_prefix or "",
 97        )
 98        self._state_backend = SqlStateBackend(
 99            sql_config=self,
100            table_prefix=self.table_prefix or "",
101        )
102
103        # Now we can create the SQL read processor
104        self._read_processor = self._sql_processor_class(
105            sql_config=self,
106            catalog_provider=self._catalog_backend.get_full_catalog_provider(),
107            state_writer=StdOutStateWriter(),  # Shouldn't be needed for the read-only processor
108            temp_dir=self.cache_dir,
109            temp_file_cleanup=self.cleanup,
110        )
111
112    @property
113    def config_hash(self) -> str | None:
114        """Return a hash of the cache configuration.
115
116        This is the same as the SQLConfig hash from the superclass.
117        """
118        return super(SqlConfig, self).config_hash
119
120    def execute_sql(self, sql: str | list[str]) -> None:
121        """Execute one or more SQL statements against the cache's SQL backend.
122
123        If multiple SQL statements are given, they are executed in order,
124        within the same transaction.
125
126        This method is useful for creating tables, indexes, and other
127        schema objects in the cache. It does not return any results and it
128        automatically closes the connection after executing all statements.
129
130        This method is not intended for querying data. For that, use the `get_records`
131        method - or for a low-level interface, use the `get_sql_engine` method.
132
133        If any of the statements fail, the transaction is canceled and an exception
134        is raised. Most databases will rollback the transaction in this case.
135        """
136        if isinstance(sql, str):
137            # Coerce to a list if a single string is given
138            sql = [sql]
139
140        with self.processor.get_sql_connection() as connection:
141            for sql_statement in sql:
142                connection.execute(text(sql_statement))
143
144    @final
145    @property
146    def processor(self) -> SqlProcessorBase:
147        """Return the SQL processor instance."""
148        return self._read_processor
149
150    def run_sql_query(
151        self,
152        sql_query: str,
153        *,
154        max_records: int | None = None,
155    ) -> list[dict[str, Any]]:
156        """Run a SQL query against the cache and return results as a list of dictionaries.
157
158        This method is designed for single DML statements like SELECT, SHOW, or DESCRIBE.
159        For DDL statements or multiple statements, use the processor directly.
160
161        Args:
162            sql_query: The SQL query to execute
163            max_records: Maximum number of records to return. If None, returns all records.
164
165        Returns:
166            List of dictionaries representing the query results
167        """
168        # Execute the SQL within a connection context to ensure the connection stays open
169        # while we fetch the results
170        sql_text = text(sql_query) if isinstance(sql_query, str) else sql_query
171
172        with self.processor.get_sql_connection() as conn:
173            try:
174                result = conn.execute(sql_text)
175            except (
176                sqlalchemy_exc.ProgrammingError,
177                sqlalchemy_exc.SQLAlchemyError,
178            ) as ex:
179                msg = f"Error when executing SQL:\n{sql_query}\n{type(ex).__name__}{ex!s}"
180                raise RuntimeError(msg) from ex
181
182            # Convert the result to a list of dictionaries while connection is still open
183            if result.returns_rows:
184                # Get column names
185                columns = list(result.keys()) if result.keys() else []
186
187                # Fetch rows efficiently based on limit
188                if max_records is not None:
189                    rows = result.fetchmany(max_records)
190                else:
191                    rows = result.fetchall()
192
193                return [dict(zip(columns, row, strict=True)) for row in rows]
194
195            # For non-SELECT queries (INSERT, UPDATE, DELETE, etc.)
196            return []
197
198    def get_record_processor(
199        self,
200        source_name: str,
201        catalog_provider: CatalogProvider,
202        state_writer: StateWriterBase | None = None,
203    ) -> SqlProcessorBase:
204        """Return a record processor for the specified source name and catalog.
205
206        We first register the source and its catalog with the catalog manager. Then we create a new
207        SQL processor instance with (only) the given input catalog.
208
209        For the state writer, we use a state writer which stores state in an internal SQL table.
210        """
211        # First register the source and catalog into durable storage. This is necessary to ensure
212        # that we can later retrieve the catalog information.
213        self.register_source(
214            source_name=source_name,
215            incoming_source_catalog=catalog_provider.configured_catalog,
216            stream_names=set(catalog_provider.stream_names),
217        )
218
219        # Next create a new SQL processor instance with the given catalog - and a state writer
220        # that writes state to the internal SQL table and associates with the given source name.
221        return self._sql_processor_class(
222            sql_config=self,
223            catalog_provider=catalog_provider,
224            state_writer=state_writer or self.get_state_writer(source_name=source_name),
225            temp_dir=self.cache_dir,
226            temp_file_cleanup=self.cleanup,
227        )
228
229    # Read methods:
230
231    def get_records(
232        self,
233        stream_name: str,
234    ) -> CachedDataset:
235        """Uses SQLAlchemy to select all rows from the table."""
236        return CachedDataset(self, stream_name)
237
238    def get_pandas_dataframe(
239        self,
240        stream_name: str,
241    ) -> pd.DataFrame:
242        """Return a Pandas data frame with the stream's data."""
243        table_name = self._read_processor.get_sql_table_name(stream_name)
244        engine = self.get_sql_engine()
245        return pd.read_sql_table(table_name, engine, schema=self.schema_name)
246
247    def get_arrow_dataset(
248        self,
249        stream_name: str,
250        *,
251        max_chunk_size: int = DEFAULT_ARROW_MAX_CHUNK_SIZE,
252    ) -> ds.Dataset:
253        """Return an Arrow Dataset with the stream's data."""
254        table_name = self._read_processor.get_sql_table_name(stream_name)
255        engine = self.get_sql_engine()
256
257        # Read the table in chunks to handle large tables which does not fits in memory
258        pandas_chunks = pd.read_sql_table(
259            table_name=table_name,
260            con=engine,
261            schema=self.schema_name,
262            chunksize=max_chunk_size,
263        )
264
265        arrow_batches_list = []
266        arrow_schema = None
267
268        for pandas_chunk in pandas_chunks:
269            if arrow_schema is None:
270                # Initialize the schema with the first chunk
271                arrow_schema = pa.Schema.from_pandas(pandas_chunk)
272
273            # Convert each pandas chunk to an Arrow Table
274            arrow_table = pa.RecordBatch.from_pandas(pandas_chunk, schema=arrow_schema)
275            arrow_batches_list.append(arrow_table)
276
277        return ds.dataset(arrow_batches_list)
278
279    @final
280    @property
281    def streams(self) -> dict[str, CachedDataset]:
282        """Return a temporary table name."""
283        result = {}
284        stream_names = set(self._catalog_backend.stream_names)
285
286        for stream_name in stream_names:
287            result[stream_name] = CachedDataset(self, stream_name)
288
289        return result
290
291    @final
292    def __len__(self) -> int:
293        """Gets the number of streams."""
294        return len(self._catalog_backend.stream_names)
295
296    @final
297    def __bool__(self) -> bool:
298        """Always True.
299
300        This is needed so that caches with zero streams are not falsey (None-like).
301        """
302        return True
303
304    def get_state_provider(
305        self,
306        source_name: str,
307        *,
308        refresh: bool = True,
309        destination_name: str | None = None,
310    ) -> StateProviderBase:
311        """Return a state provider for the specified source name."""
312        return self._state_backend.get_state_provider(
313            source_name=source_name,
314            table_prefix=self.table_prefix or "",
315            refresh=refresh,
316            destination_name=destination_name,
317        )
318
319    def get_state_writer(
320        self,
321        source_name: str,
322        destination_name: str | None = None,
323    ) -> StateWriterBase:
324        """Return a state writer for the specified source name.
325
326        If syncing to the cache, `destination_name` should be `None`.
327        If syncing to a destination, `destination_name` should be the destination name.
328        """
329        return self._state_backend.get_state_writer(
330            source_name=source_name,
331            destination_name=destination_name,
332        )
333
334    def register_source(
335        self,
336        source_name: str,
337        incoming_source_catalog: ConfiguredAirbyteCatalog,
338        stream_names: set[str],
339    ) -> None:
340        """Register the source name and catalog."""
341        self._catalog_backend.register_source(
342            source_name=source_name,
343            incoming_source_catalog=incoming_source_catalog,
344            incoming_stream_names=stream_names,
345        )
346
347    def create_source_tables(
348        self,
349        source: Source,
350        streams: Literal["*"] | list[str] | None = None,
351    ) -> None:
352        """Create tables in the cache for the provided source if they do not exist already.
353
354        Tables are created based upon the Source's catalog.
355
356        Args:
357            source: The source to create tables for.
358            streams: Stream names to create tables for. If None, use the Source's selected_streams
359                or "*" if neither is set. If "*", all available streams will be used.
360        """
361        if streams is None:
362            streams = source.get_selected_streams() or "*"
363
364        catalog_provider = CatalogProvider(source.get_configured_catalog(streams=streams))
365
366        # Register the incoming source catalog
367        self.register_source(
368            source_name=source.name,
369            incoming_source_catalog=catalog_provider.configured_catalog,
370            stream_names=set(catalog_provider.stream_names),
371        )
372
373        # Ensure schema exists
374        self.processor._ensure_schema_exists()  # noqa: SLF001  # Accessing non-public member
375
376        # Create tables for each stream if they don't exist
377        for stream_name in catalog_provider.stream_names:
378            self.processor._ensure_final_table_exists(  # noqa: SLF001
379                stream_name=stream_name,
380                create_if_missing=True,
381            )
382
383    def __getitem__(self, stream: str) -> CachedDataset:
384        """Return a dataset by stream name."""
385        return self.streams[stream]
386
387    def __contains__(self, stream: str) -> bool:
388        """Return whether a stream is in the cache."""
389        return stream in (self._catalog_backend.stream_names)
390
391    def __iter__(  # type: ignore [override]  # Overriding Pydantic model method
392        self,
393    ) -> Iterator[tuple[str, Any]]:
394        """Iterate over the streams in the cache."""
395        return ((name, dataset) for name, dataset in self.streams.items())
396
397    def _write_airbyte_message_stream(
398        self,
399        stdin: IO[str] | AirbyteMessageIterator,
400        *,
401        catalog_provider: CatalogProvider,
402        write_strategy: WriteStrategy,
403        state_writer: StateWriterBase | None = None,
404        progress_tracker: ProgressTracker,
405    ) -> None:
406        """Read from the connector and write to the cache."""
407        cache_processor = self.get_record_processor(
408            source_name=self.name,
409            catalog_provider=catalog_provider,
410            state_writer=state_writer,
411        )
412        cache_processor.process_airbyte_messages(
413            messages=stdin,
414            write_strategy=write_strategy,
415            progress_tracker=progress_tracker,
416        )
417        progress_tracker.log_cache_processing_complete()

Base configuration for a cache.

Caches inherit from the matching SqlConfig class, which provides the SQL config settings and basic connectivity to the SQL database.

The cache is responsible for managing the state of the data synced to the cache, including the stream catalog and stream state. The cache also provides the mechanism to read and write data to the SQL backend specified in the SqlConfig class.

CacheBase(**data: Any)
 79    def __init__(self, **data: Any) -> None:  # noqa: ANN401
 80        """Initialize the cache and backends."""
 81        super().__init__(**data)
 82
 83        # Create a temporary processor to do the work of ensuring the schema exists
 84        temp_processor = self._sql_processor_class(
 85            sql_config=self,
 86            catalog_provider=CatalogProvider(ConfiguredAirbyteCatalog(streams=[])),
 87            state_writer=StdOutStateWriter(),
 88            temp_dir=self.cache_dir,
 89            temp_file_cleanup=self.cleanup,
 90        )
 91        temp_processor._ensure_schema_exists()  # noqa: SLF001  # Accessing non-public member
 92
 93        # Initialize the catalog and state backends
 94        self._catalog_backend = SqlCatalogBackend(
 95            sql_config=self,
 96            table_prefix=self.table_prefix or "",
 97        )
 98        self._state_backend = SqlStateBackend(
 99            sql_config=self,
100            table_prefix=self.table_prefix or "",
101        )
102
103        # Now we can create the SQL read processor
104        self._read_processor = self._sql_processor_class(
105            sql_config=self,
106            catalog_provider=self._catalog_backend.get_full_catalog_provider(),
107            state_writer=StdOutStateWriter(),  # Shouldn't be needed for the read-only processor
108            temp_dir=self.cache_dir,
109            temp_file_cleanup=self.cleanup,
110        )

Initialize the cache and backends.

cache_dir: pathlib.Path

The directory to store the cache in.

cleanup: bool

Whether to clean up the cache after use.

paired_destination_name: ClassVar[str | None] = None
paired_destination_config_class: ClassVar[type | None] = None
paired_destination_config: Union[Any, dict[str, Any]]
71    @property
72    def paired_destination_config(self) -> Any | dict[str, Any]:  # noqa: ANN401  # Allow Any return type
73        """Return a dictionary of destination configuration values."""
74        raise NotImplementedError(
75            f"The type '{type(self).__name__}' does not define an equivalent destination "
76            "configuration."
77        )

Return a dictionary of destination configuration values.

config_hash: str | None
112    @property
113    def config_hash(self) -> str | None:
114        """Return a hash of the cache configuration.
115
116        This is the same as the SQLConfig hash from the superclass.
117        """
118        return super(SqlConfig, self).config_hash

Return a hash of the cache configuration.

This is the same as the SQLConfig hash from the superclass.

def execute_sql(self, sql: str | list[str]) -> None:
120    def execute_sql(self, sql: str | list[str]) -> None:
121        """Execute one or more SQL statements against the cache's SQL backend.
122
123        If multiple SQL statements are given, they are executed in order,
124        within the same transaction.
125
126        This method is useful for creating tables, indexes, and other
127        schema objects in the cache. It does not return any results and it
128        automatically closes the connection after executing all statements.
129
130        This method is not intended for querying data. For that, use the `get_records`
131        method - or for a low-level interface, use the `get_sql_engine` method.
132
133        If any of the statements fail, the transaction is canceled and an exception
134        is raised. Most databases will rollback the transaction in this case.
135        """
136        if isinstance(sql, str):
137            # Coerce to a list if a single string is given
138            sql = [sql]
139
140        with self.processor.get_sql_connection() as connection:
141            for sql_statement in sql:
142                connection.execute(text(sql_statement))

Execute one or more SQL statements against the cache's SQL backend.

If multiple SQL statements are given, they are executed in order, within the same transaction.

This method is useful for creating tables, indexes, and other schema objects in the cache. It does not return any results and it automatically closes the connection after executing all statements.

This method is not intended for querying data. For that, use the get_records method - or for a low-level interface, use the get_sql_engine method.

If any of the statements fail, the transaction is canceled and an exception is raised. Most databases will rollback the transaction in this case.

processor: airbyte.shared.sql_processor.SqlProcessorBase
144    @final
145    @property
146    def processor(self) -> SqlProcessorBase:
147        """Return the SQL processor instance."""
148        return self._read_processor

Return the SQL processor instance.

def run_sql_query( self, sql_query: str, *, max_records: int | None = None) -> list[dict[str, typing.Any]]:
150    def run_sql_query(
151        self,
152        sql_query: str,
153        *,
154        max_records: int | None = None,
155    ) -> list[dict[str, Any]]:
156        """Run a SQL query against the cache and return results as a list of dictionaries.
157
158        This method is designed for single DML statements like SELECT, SHOW, or DESCRIBE.
159        For DDL statements or multiple statements, use the processor directly.
160
161        Args:
162            sql_query: The SQL query to execute
163            max_records: Maximum number of records to return. If None, returns all records.
164
165        Returns:
166            List of dictionaries representing the query results
167        """
168        # Execute the SQL within a connection context to ensure the connection stays open
169        # while we fetch the results
170        sql_text = text(sql_query) if isinstance(sql_query, str) else sql_query
171
172        with self.processor.get_sql_connection() as conn:
173            try:
174                result = conn.execute(sql_text)
175            except (
176                sqlalchemy_exc.ProgrammingError,
177                sqlalchemy_exc.SQLAlchemyError,
178            ) as ex:
179                msg = f"Error when executing SQL:\n{sql_query}\n{type(ex).__name__}{ex!s}"
180                raise RuntimeError(msg) from ex
181
182            # Convert the result to a list of dictionaries while connection is still open
183            if result.returns_rows:
184                # Get column names
185                columns = list(result.keys()) if result.keys() else []
186
187                # Fetch rows efficiently based on limit
188                if max_records is not None:
189                    rows = result.fetchmany(max_records)
190                else:
191                    rows = result.fetchall()
192
193                return [dict(zip(columns, row, strict=True)) for row in rows]
194
195            # For non-SELECT queries (INSERT, UPDATE, DELETE, etc.)
196            return []

Run a SQL query against the cache and return results as a list of dictionaries.

This method is designed for single DML statements like SELECT, SHOW, or DESCRIBE. For DDL statements or multiple statements, use the processor directly.

Arguments:
  • sql_query: The SQL query to execute
  • max_records: Maximum number of records to return. If None, returns all records.
Returns:

List of dictionaries representing the query results

def get_record_processor( self, source_name: str, catalog_provider: airbyte.shared.catalog_providers.CatalogProvider, state_writer: airbyte.shared.state_writers.StateWriterBase | None = None) -> airbyte.shared.sql_processor.SqlProcessorBase:
198    def get_record_processor(
199        self,
200        source_name: str,
201        catalog_provider: CatalogProvider,
202        state_writer: StateWriterBase | None = None,
203    ) -> SqlProcessorBase:
204        """Return a record processor for the specified source name and catalog.
205
206        We first register the source and its catalog with the catalog manager. Then we create a new
207        SQL processor instance with (only) the given input catalog.
208
209        For the state writer, we use a state writer which stores state in an internal SQL table.
210        """
211        # First register the source and catalog into durable storage. This is necessary to ensure
212        # that we can later retrieve the catalog information.
213        self.register_source(
214            source_name=source_name,
215            incoming_source_catalog=catalog_provider.configured_catalog,
216            stream_names=set(catalog_provider.stream_names),
217        )
218
219        # Next create a new SQL processor instance with the given catalog - and a state writer
220        # that writes state to the internal SQL table and associates with the given source name.
221        return self._sql_processor_class(
222            sql_config=self,
223            catalog_provider=catalog_provider,
224            state_writer=state_writer or self.get_state_writer(source_name=source_name),
225            temp_dir=self.cache_dir,
226            temp_file_cleanup=self.cleanup,
227        )

Return a record processor for the specified source name and catalog.

We first register the source and its catalog with the catalog manager. Then we create a new SQL processor instance with (only) the given input catalog.

For the state writer, we use a state writer which stores state in an internal SQL table.

def get_records(self, stream_name: str) -> airbyte.CachedDataset:
231    def get_records(
232        self,
233        stream_name: str,
234    ) -> CachedDataset:
235        """Uses SQLAlchemy to select all rows from the table."""
236        return CachedDataset(self, stream_name)

Uses SQLAlchemy to select all rows from the table.

def get_pandas_dataframe(self, stream_name: str) -> pandas.core.frame.DataFrame:
238    def get_pandas_dataframe(
239        self,
240        stream_name: str,
241    ) -> pd.DataFrame:
242        """Return a Pandas data frame with the stream's data."""
243        table_name = self._read_processor.get_sql_table_name(stream_name)
244        engine = self.get_sql_engine()
245        return pd.read_sql_table(table_name, engine, schema=self.schema_name)

Return a Pandas data frame with the stream's data.

def get_arrow_dataset( self, stream_name: str, *, max_chunk_size: int = 100000) -> pyarrow._dataset.Dataset:
247    def get_arrow_dataset(
248        self,
249        stream_name: str,
250        *,
251        max_chunk_size: int = DEFAULT_ARROW_MAX_CHUNK_SIZE,
252    ) -> ds.Dataset:
253        """Return an Arrow Dataset with the stream's data."""
254        table_name = self._read_processor.get_sql_table_name(stream_name)
255        engine = self.get_sql_engine()
256
257        # Read the table in chunks to handle large tables which does not fits in memory
258        pandas_chunks = pd.read_sql_table(
259            table_name=table_name,
260            con=engine,
261            schema=self.schema_name,
262            chunksize=max_chunk_size,
263        )
264
265        arrow_batches_list = []
266        arrow_schema = None
267
268        for pandas_chunk in pandas_chunks:
269            if arrow_schema is None:
270                # Initialize the schema with the first chunk
271                arrow_schema = pa.Schema.from_pandas(pandas_chunk)
272
273            # Convert each pandas chunk to an Arrow Table
274            arrow_table = pa.RecordBatch.from_pandas(pandas_chunk, schema=arrow_schema)
275            arrow_batches_list.append(arrow_table)
276
277        return ds.dataset(arrow_batches_list)

Return an Arrow Dataset with the stream's data.

streams: dict[str, airbyte.CachedDataset]
279    @final
280    @property
281    def streams(self) -> dict[str, CachedDataset]:
282        """Return a temporary table name."""
283        result = {}
284        stream_names = set(self._catalog_backend.stream_names)
285
286        for stream_name in stream_names:
287            result[stream_name] = CachedDataset(self, stream_name)
288
289        return result

Return a temporary table name.

def get_state_provider( self, source_name: str, *, refresh: bool = True, destination_name: str | None = None) -> airbyte.shared.state_providers.StateProviderBase:
304    def get_state_provider(
305        self,
306        source_name: str,
307        *,
308        refresh: bool = True,
309        destination_name: str | None = None,
310    ) -> StateProviderBase:
311        """Return a state provider for the specified source name."""
312        return self._state_backend.get_state_provider(
313            source_name=source_name,
314            table_prefix=self.table_prefix or "",
315            refresh=refresh,
316            destination_name=destination_name,
317        )

Return a state provider for the specified source name.

def get_state_writer( self, source_name: str, destination_name: str | None = None) -> airbyte.shared.state_writers.StateWriterBase:
319    def get_state_writer(
320        self,
321        source_name: str,
322        destination_name: str | None = None,
323    ) -> StateWriterBase:
324        """Return a state writer for the specified source name.
325
326        If syncing to the cache, `destination_name` should be `None`.
327        If syncing to a destination, `destination_name` should be the destination name.
328        """
329        return self._state_backend.get_state_writer(
330            source_name=source_name,
331            destination_name=destination_name,
332        )

Return a state writer for the specified source name.

If syncing to the cache, destination_name should be None. If syncing to a destination, destination_name should be the destination name.

def register_source( self, source_name: str, incoming_source_catalog: airbyte_protocol.models.airbyte_protocol.ConfiguredAirbyteCatalog, stream_names: set[str]) -> None:
334    def register_source(
335        self,
336        source_name: str,
337        incoming_source_catalog: ConfiguredAirbyteCatalog,
338        stream_names: set[str],
339    ) -> None:
340        """Register the source name and catalog."""
341        self._catalog_backend.register_source(
342            source_name=source_name,
343            incoming_source_catalog=incoming_source_catalog,
344            incoming_stream_names=stream_names,
345        )

Register the source name and catalog.

def create_source_tables( self, source: airbyte.Source, streams: Union[list[str], Literal['*'], NoneType] = None) -> None:
347    def create_source_tables(
348        self,
349        source: Source,
350        streams: Literal["*"] | list[str] | None = None,
351    ) -> None:
352        """Create tables in the cache for the provided source if they do not exist already.
353
354        Tables are created based upon the Source's catalog.
355
356        Args:
357            source: The source to create tables for.
358            streams: Stream names to create tables for. If None, use the Source's selected_streams
359                or "*" if neither is set. If "*", all available streams will be used.
360        """
361        if streams is None:
362            streams = source.get_selected_streams() or "*"
363
364        catalog_provider = CatalogProvider(source.get_configured_catalog(streams=streams))
365
366        # Register the incoming source catalog
367        self.register_source(
368            source_name=source.name,
369            incoming_source_catalog=catalog_provider.configured_catalog,
370            stream_names=set(catalog_provider.stream_names),
371        )
372
373        # Ensure schema exists
374        self.processor._ensure_schema_exists()  # noqa: SLF001  # Accessing non-public member
375
376        # Create tables for each stream if they don't exist
377        for stream_name in catalog_provider.stream_names:
378            self.processor._ensure_final_table_exists(  # noqa: SLF001
379                stream_name=stream_name,
380                create_if_missing=True,
381            )

Create tables in the cache for the provided source if they do not exist already.

Tables are created based upon the Source's catalog.

Arguments:
  • source: The source to create tables for.
  • streams: Stream names to create tables for. If None, use the Source's selected_streams or "" if neither is set. If "", all available streams will be used.
model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
328def init_private_attributes(self: BaseModel, context: Any, /) -> None:
329    """This function is meant to behave like a BaseModel method to initialise private attributes.
330
331    It takes context as an argument since that's what pydantic-core passes when calling it.
332
333    Args:
334        self: The BaseModel instance.
335        context: The context.
336    """
337    if getattr(self, '__pydantic_private__', None) is None:
338        pydantic_private = {}
339        for name, private_attr in self.__private_attributes__.items():
340            default = private_attr.get_default()
341            if default is not PydanticUndefined:
342                pydantic_private[name] = default
343        object_setattr(self, '__pydantic_private__', pydantic_private)

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that's what pydantic-core passes when calling it.

Arguments:
  • self: The BaseModel instance.
  • context: The context.
Inherited Members
airbyte.shared.sql_processor.SqlConfig
schema_name
table_prefix
get_sql_alchemy_url
get_database_name
get_create_table_extra_clauses
get_sql_alchemy_connect_args
get_sql_engine
get_vendor_client
pydantic.main.BaseModel
model_extra
model_fields_set
model_construct
model_copy
model_dump
model_dump_json
model_json_schema
model_parametrized_name
model_rebuild
model_validate
model_validate_json
model_validate_strings
dict
json
parse_obj
parse_raw
parse_file
from_orm
construct
copy
schema
schema_json
validate
update_forward_refs
model_fields
model_computed_fields
airbyte._writers.base.AirbyteWriterInterface
name
class DuckDBCache(airbyte._processors.sql.duckdb.DuckDBConfig, airbyte.caches.CacheBase):
44class DuckDBCache(DuckDBConfig, CacheBase):
45    """A DuckDB cache."""
46
47    _sql_processor_class: ClassVar[type[SqlProcessorBase]] = DuckDBSqlProcessor
48
49    paired_destination_name: ClassVar[str | None] = "destination-duckdb"
50    paired_destination_config_class: ClassVar[type | None] = DestinationDuckdb
51
52    @property
53    def paired_destination_config(self) -> DestinationDuckdb:
54        """Return a dictionary of destination configuration values."""
55        return duckdb_cache_to_destination_configuration(cache=self)

A DuckDB cache.

paired_destination_name: ClassVar[str | None] = 'destination-duckdb'
paired_destination_config_class: ClassVar[type | None] = <class 'airbyte_api.models.destination_duckdb.DestinationDuckdb'>
paired_destination_config: airbyte_api.models.destination_duckdb.DestinationDuckdb
52    @property
53    def paired_destination_config(self) -> DestinationDuckdb:
54        """Return a dictionary of destination configuration values."""
55        return duckdb_cache_to_destination_configuration(cache=self)

Return a dictionary of destination configuration values.

model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
122                    def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None:
123                        """We need to both initialize private attributes and call the user-defined model_post_init
124                        method.
125                        """
126                        init_private_attributes(self, context)
127                        original_model_post_init(self, context)

We need to both initialize private attributes and call the user-defined model_post_init method.

Inherited Members
CacheBase
CacheBase
cache_dir
cleanup
config_hash
execute_sql
processor
run_sql_query
get_record_processor
get_records
get_pandas_dataframe
get_arrow_dataset
streams
get_state_provider
get_state_writer
register_source
create_source_tables
airbyte._processors.sql.duckdb.DuckDBConfig
db_path
schema_name
get_sql_alchemy_url
get_database_name
get_sql_engine
airbyte.shared.sql_processor.SqlConfig
table_prefix
get_create_table_extra_clauses
get_sql_alchemy_connect_args
get_vendor_client
pydantic.main.BaseModel
model_extra
model_fields_set
model_construct
model_copy
model_dump
model_dump_json
model_json_schema
model_parametrized_name
model_rebuild
model_validate
model_validate_json
model_validate_strings
dict
json
parse_obj
parse_raw
parse_file
from_orm
construct
copy
schema
schema_json
validate
update_forward_refs
model_fields
model_computed_fields
airbyte._writers.base.AirbyteWriterInterface
name
72class MotherDuckCache(MotherDuckConfig, DuckDBCache):
73    """Cache that uses MotherDuck for external persistent storage."""
74
75    _sql_processor_class: ClassVar[type[SqlProcessorBase]] = MotherDuckSqlProcessor
76
77    paired_destination_name: ClassVar[str | None] = "destination-bigquery"
78    paired_destination_config_class: ClassVar[type | None] = DestinationDuckdb
79
80    @property
81    def paired_destination_config(self) -> DestinationDuckdb:
82        """Return a dictionary of destination configuration values."""
83        return motherduck_cache_to_destination_configuration(cache=self)

Cache that uses MotherDuck for external persistent storage.

paired_destination_name: ClassVar[str | None] = 'destination-bigquery'
paired_destination_config_class: ClassVar[type | None] = <class 'airbyte_api.models.destination_duckdb.DestinationDuckdb'>
paired_destination_config: airbyte_api.models.destination_duckdb.DestinationDuckdb
80    @property
81    def paired_destination_config(self) -> DestinationDuckdb:
82        """Return a dictionary of destination configuration values."""
83        return motherduck_cache_to_destination_configuration(cache=self)

Return a dictionary of destination configuration values.

model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
122                    def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None:
123                        """We need to both initialize private attributes and call the user-defined model_post_init
124                        method.
125                        """
126                        init_private_attributes(self, context)
127                        original_model_post_init(self, context)

We need to both initialize private attributes and call the user-defined model_post_init method.

Inherited Members
CacheBase
CacheBase
cache_dir
cleanup
config_hash
execute_sql
processor
run_sql_query
get_record_processor
get_records
get_pandas_dataframe
get_arrow_dataset
streams
get_state_provider
get_state_writer
register_source
create_source_tables
airbyte.caches.motherduck.MotherDuckConfig
database
api_key
db_path
get_sql_alchemy_url
get_database_name
airbyte._processors.sql.duckdb.DuckDBConfig
schema_name
get_sql_engine
airbyte.shared.sql_processor.SqlConfig
table_prefix
get_create_table_extra_clauses
get_sql_alchemy_connect_args
get_vendor_client
pydantic.main.BaseModel
model_extra
model_fields_set
model_construct
model_copy
model_dump
model_dump_json
model_json_schema
model_parametrized_name
model_rebuild
model_validate
model_validate_json
model_validate_strings
dict
json
parse_obj
parse_raw
parse_file
from_orm
construct
copy
schema
schema_json
validate
update_forward_refs
model_fields
model_computed_fields
airbyte._writers.base.AirbyteWriterInterface
name
class PostgresCache(airbyte._processors.sql.postgres.PostgresConfig, airbyte.caches.CacheBase):
38class PostgresCache(PostgresConfig, CacheBase):
39    """Configuration for the Postgres cache.
40
41    Also inherits config from the JsonlWriter, which is responsible for writing files to disk.
42    """
43
44    _sql_processor_class: ClassVar[type[SqlProcessorBase]] = PostgresSqlProcessor
45
46    paired_destination_name: ClassVar[str | None] = "destination-bigquery"
47    paired_destination_config_class: ClassVar[type | None] = DestinationPostgres
48
49    @property
50    def paired_destination_config(self) -> DestinationPostgres:
51        """Return a dictionary of destination configuration values."""
52        return postgres_cache_to_destination_configuration(cache=self)
53
54    def clone_as_cloud_destination_config(self) -> DestinationPostgres:
55        """Return a DestinationPostgres instance with the same configuration."""
56        return DestinationPostgres(
57            host=self.host,
58            port=self.port,
59            username=self.username,
60            password=self.password,
61            database=self.database,
62        )

Configuration for the Postgres cache.

Also inherits config from the JsonlWriter, which is responsible for writing files to disk.

paired_destination_name: ClassVar[str | None] = 'destination-bigquery'
paired_destination_config_class: ClassVar[type | None] = <class 'airbyte_api.models.destination_postgres.DestinationPostgres'>
paired_destination_config: airbyte_api.models.destination_postgres.DestinationPostgres
49    @property
50    def paired_destination_config(self) -> DestinationPostgres:
51        """Return a dictionary of destination configuration values."""
52        return postgres_cache_to_destination_configuration(cache=self)

Return a dictionary of destination configuration values.

def clone_as_cloud_destination_config(self) -> airbyte_api.models.destination_postgres.DestinationPostgres:
54    def clone_as_cloud_destination_config(self) -> DestinationPostgres:
55        """Return a DestinationPostgres instance with the same configuration."""
56        return DestinationPostgres(
57            host=self.host,
58            port=self.port,
59            username=self.username,
60            password=self.password,
61            database=self.database,
62        )

Return a DestinationPostgres instance with the same configuration.

model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
122                    def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None:
123                        """We need to both initialize private attributes and call the user-defined model_post_init
124                        method.
125                        """
126                        init_private_attributes(self, context)
127                        original_model_post_init(self, context)

We need to both initialize private attributes and call the user-defined model_post_init method.

Inherited Members
CacheBase
CacheBase
cache_dir
cleanup
config_hash
execute_sql
processor
run_sql_query
get_record_processor
get_records
get_pandas_dataframe
get_arrow_dataset
streams
get_state_provider
get_state_writer
register_source
create_source_tables
airbyte._processors.sql.postgres.PostgresConfig
host
port
database
username
password
get_sql_alchemy_url
get_database_name
airbyte.shared.sql_processor.SqlConfig
schema_name
table_prefix
get_create_table_extra_clauses
get_sql_alchemy_connect_args
get_sql_engine
get_vendor_client
pydantic.main.BaseModel
model_extra
model_fields_set
model_construct
model_copy
model_dump
model_dump_json
model_json_schema
model_parametrized_name
model_rebuild
model_validate
model_validate_json
model_validate_strings
dict
json
parse_obj
parse_raw
parse_file
from_orm
construct
copy
schema
schema_json
validate
update_forward_refs
model_fields
model_computed_fields
airbyte._writers.base.AirbyteWriterInterface
name
class SnowflakeCache(airbyte._processors.sql.snowflake.SnowflakeConfig, airbyte.caches.CacheBase):
75class SnowflakeCache(SnowflakeConfig, CacheBase):
76    """Configuration for the Snowflake cache."""
77
78    dedupe_mode: RecordDedupeMode = RecordDedupeMode.APPEND
79
80    _sql_processor_class: ClassVar[type[SqlProcessorBase]] = SnowflakeSqlProcessor
81
82    paired_destination_name: ClassVar[str | None] = "destination-bigquery"
83    paired_destination_config_class: ClassVar[type | None] = DestinationSnowflake
84
85    @property
86    def paired_destination_config(self) -> DestinationSnowflake:
87        """Return a dictionary of destination configuration values."""
88        return snowflake_cache_to_destination_configuration(cache=self)

Configuration for the Snowflake cache.

dedupe_mode: airbyte.shared.sql_processor.RecordDedupeMode
paired_destination_name: ClassVar[str | None] = 'destination-bigquery'
paired_destination_config_class: ClassVar[type | None] = <class 'airbyte_api.models.destination_snowflake.DestinationSnowflake'>
paired_destination_config: airbyte_api.models.destination_snowflake.DestinationSnowflake
85    @property
86    def paired_destination_config(self) -> DestinationSnowflake:
87        """Return a dictionary of destination configuration values."""
88        return snowflake_cache_to_destination_configuration(cache=self)

Return a dictionary of destination configuration values.

model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
122                    def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None:
123                        """We need to both initialize private attributes and call the user-defined model_post_init
124                        method.
125                        """
126                        init_private_attributes(self, context)
127                        original_model_post_init(self, context)

We need to both initialize private attributes and call the user-defined model_post_init method.

Inherited Members
CacheBase
CacheBase
cache_dir
cleanup
config_hash
execute_sql
processor
run_sql_query
get_record_processor
get_records
get_pandas_dataframe
get_arrow_dataset
streams
get_state_provider
get_state_writer
register_source
create_source_tables
airbyte._processors.sql.snowflake.SnowflakeConfig
account
username
password
private_key
private_key_path
private_key_passphrase
warehouse
database
role
schema_name
data_retention_time_in_days
get_sql_alchemy_connect_args
get_create_table_extra_clauses
get_database_name
get_sql_alchemy_url
get_vendor_client
airbyte.shared.sql_processor.SqlConfig
table_prefix
get_sql_engine
pydantic.main.BaseModel
model_extra
model_fields_set
model_construct
model_copy
model_dump
model_dump_json
model_json_schema
model_parametrized_name
model_rebuild
model_validate
model_validate_json
model_validate_strings
dict
json
parse_obj
parse_raw
parse_file
from_orm
construct
copy
schema
schema_json
validate
update_forward_refs
model_fields
model_computed_fields
airbyte._writers.base.AirbyteWriterInterface
name