airbyte.caches

Base module for all caches.

 1# Copyright (c) 2023 Airbyte, Inc., all rights reserved.
 2"""Base module for all caches."""
 3
 4from __future__ import annotations
 5
 6from typing import TYPE_CHECKING
 7
 8from airbyte.caches.base import CacheBase
 9from airbyte.caches.bigquery import BigQueryCache
10from airbyte.caches.duckdb import DuckDBCache
11from airbyte.caches.motherduck import MotherDuckCache
12from airbyte.caches.postgres import PostgresCache
13from airbyte.caches.snowflake import SnowflakeCache
14from airbyte.caches.util import get_default_cache, new_local_cache
15
16
17# Submodules imported here for documentation reasons: https://github.com/mitmproxy/pdoc/issues/757
18if TYPE_CHECKING:
19    # ruff: noqa: TC004
20    from airbyte.caches import base, bigquery, duckdb, motherduck, postgres, snowflake, util
21
22# We export these classes for easy access: `airbyte.caches...`
23__all__ = [
24    # Factories
25    "get_default_cache",
26    "new_local_cache",
27    # Classes
28    "BigQueryCache",
29    "CacheBase",
30    "DuckDBCache",
31    "MotherDuckCache",
32    "PostgresCache",
33    "SnowflakeCache",
34    # Submodules,
35    "util",
36    "bigquery",
37    "duckdb",
38    "motherduck",
39    "postgres",
40    "snowflake",
41    "base",
42]
def get_default_cache() -> DuckDBCache:
27def get_default_cache() -> DuckDBCache:
28    """Get a local cache for storing data, using the default database path.
29
30    Cache files are stored in the `.cache` directory, relative to the current
31    working directory.
32    """
33    cache_dir = Path("./.cache/default_cache")
34    return DuckDBCache(
35        db_path=cache_dir / "default_cache.duckdb",
36        cache_dir=cache_dir,
37    )

Get a local cache for storing data, using the default database path.

Cache files are stored in the .cache directory, relative to the current working directory.

def new_local_cache( cache_name: str | None = None, cache_dir: str | pathlib.Path | None = None, *, cleanup: bool = True) -> DuckDBCache:
40def new_local_cache(
41    cache_name: str | None = None,
42    cache_dir: str | Path | None = None,
43    *,
44    cleanup: bool = True,
45) -> DuckDBCache:
46    """Get a local cache for storing data, using a name string to seed the path.
47
48    Args:
49        cache_name: Name to use for the cache. Defaults to None.
50        cache_dir: Root directory to store the cache in. Defaults to None.
51        cleanup: Whether to clean up temporary files. Defaults to True.
52
53    Cache files are stored in the `.cache` directory, relative to the current
54    working directory.
55    """
56    if cache_name:
57        if " " in cache_name:
58            raise exc.PyAirbyteInputError(
59                message="Cache name cannot contain spaces.",
60                input_value=cache_name,
61            )
62
63        if not cache_name.replace("_", "").isalnum():
64            raise exc.PyAirbyteInputError(
65                message="Cache name can only contain alphanumeric characters and underscores.",
66                input_value=cache_name,
67            )
68
69    cache_name = cache_name or str(ulid.ULID())
70    cache_dir = cache_dir or Path(f"./.cache/{cache_name}")
71    if not isinstance(cache_dir, Path):
72        cache_dir = Path(cache_dir)
73
74    return DuckDBCache(
75        db_path=cache_dir / f"db_{cache_name}.duckdb",
76        cache_dir=cache_dir,
77        cleanup=cleanup,
78    )

Get a local cache for storing data, using a name string to seed the path.

Arguments:
  • cache_name: Name to use for the cache. Defaults to None.
  • cache_dir: Root directory to store the cache in. Defaults to None.
  • cleanup: Whether to clean up temporary files. Defaults to True.

Cache files are stored in the .cache directory, relative to the current working directory.

class BigQueryCache(airbyte._processors.sql.bigquery.BigQueryConfig, airbyte.caches.CacheBase):
39class BigQueryCache(BigQueryConfig, CacheBase):
40    """The BigQuery cache implementation."""
41
42    _sql_processor_class: ClassVar[type[SqlProcessorBase]] = BigQuerySqlProcessor
43
44    paired_destination_name: ClassVar[str | None] = "destination-bigquery"
45    paired_destination_config_class: ClassVar[type | None] = DestinationBigquery
46
47    @property
48    def paired_destination_config(self) -> DestinationBigquery:
49        """Return a dictionary of destination configuration values."""
50        return bigquery_cache_to_destination_configuration(cache=self)
51
52    def get_arrow_dataset(
53        self,
54        stream_name: str,
55        *,
56        max_chunk_size: int = DEFAULT_ARROW_MAX_CHUNK_SIZE,
57    ) -> NoReturn:
58        """Raises NotImplementedError; BigQuery doesn't support `pd.read_sql_table`.
59
60        See: https://github.com/airbytehq/PyAirbyte/issues/165
61        """
62        raise NotImplementedError(
63            "BigQuery doesn't currently support to_arrow"
64            "Please consider using a different cache implementation for these functionalities."
65        )

The BigQuery cache implementation.

paired_destination_name: ClassVar[str | None] = 'destination-bigquery'
paired_destination_config_class: ClassVar[type | None] = <class 'airbyte_api.models.destination_bigquery.DestinationBigquery'>
paired_destination_config: airbyte_api.models.destination_bigquery.DestinationBigquery
47    @property
48    def paired_destination_config(self) -> DestinationBigquery:
49        """Return a dictionary of destination configuration values."""
50        return bigquery_cache_to_destination_configuration(cache=self)

Return a dictionary of destination configuration values.

def get_arrow_dataset(self, stream_name: str, *, max_chunk_size: int = 100000) -> NoReturn:
52    def get_arrow_dataset(
53        self,
54        stream_name: str,
55        *,
56        max_chunk_size: int = DEFAULT_ARROW_MAX_CHUNK_SIZE,
57    ) -> NoReturn:
58        """Raises NotImplementedError; BigQuery doesn't support `pd.read_sql_table`.
59
60        See: https://github.com/airbytehq/PyAirbyte/issues/165
61        """
62        raise NotImplementedError(
63            "BigQuery doesn't currently support to_arrow"
64            "Please consider using a different cache implementation for these functionalities."
65        )

Raises NotImplementedError; BigQuery doesn't support pd.read_sql_table.

See: https://github.com/airbytehq/PyAirbyte/issues/165

model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
122                    def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None:
123                        """We need to both initialize private attributes and call the user-defined model_post_init
124                        method.
125                        """
126                        init_private_attributes(self, context)
127                        original_model_post_init(self, context)

We need to both initialize private attributes and call the user-defined model_post_init method.

Inherited Members
CacheBase
CacheBase
cache_dir
cleanup
config_hash
execute_sql
processor
get_record_processor
get_records
get_pandas_dataframe
streams
get_state_provider
get_state_writer
register_source
create_source_tables
airbyte._processors.sql.bigquery.BigQueryConfig
database_name
schema_name
credentials_path
project_name
dataset_name
get_sql_alchemy_url
get_database_name
get_vendor_client
airbyte.shared.sql_processor.SqlConfig
table_prefix
get_create_table_extra_clauses
get_sql_engine
pydantic.main.BaseModel
model_extra
model_fields_set
model_construct
model_copy
model_dump
model_dump_json
model_json_schema
model_parametrized_name
model_rebuild
model_validate
model_validate_json
model_validate_strings
dict
json
parse_obj
parse_raw
parse_file
from_orm
construct
copy
schema
schema_json
validate
update_forward_refs
model_fields
model_computed_fields
airbyte._writers.base.AirbyteWriterInterface
name
class CacheBase(airbyte.shared.sql_processor.SqlConfig, airbyte._writers.base.AirbyteWriterInterface):
 42class CacheBase(SqlConfig, AirbyteWriterInterface):
 43    """Base configuration for a cache.
 44
 45    Caches inherit from the matching `SqlConfig` class, which provides the SQL config settings
 46    and basic connectivity to the SQL database.
 47
 48    The cache is responsible for managing the state of the data synced to the cache, including the
 49    stream catalog and stream state. The cache also provides the mechanism to read and write data
 50    to the SQL backend specified in the `SqlConfig` class.
 51    """
 52
 53    cache_dir: Path = Field(default=Path(constants.DEFAULT_CACHE_ROOT))
 54    """The directory to store the cache in."""
 55
 56    cleanup: bool = TEMP_FILE_CLEANUP
 57    """Whether to clean up the cache after use."""
 58
 59    _name: str = PrivateAttr()
 60
 61    _sql_processor_class: ClassVar[type[SqlProcessorBase]]
 62    _read_processor: SqlProcessorBase = PrivateAttr()
 63
 64    _catalog_backend: CatalogBackendBase = PrivateAttr()
 65    _state_backend: StateBackendBase = PrivateAttr()
 66
 67    paired_destination_name: ClassVar[str | None] = None
 68    paired_destination_config_class: ClassVar[type | None] = None
 69
 70    @property
 71    def paired_destination_config(self) -> Any | dict[str, Any]:  # noqa: ANN401  # Allow Any return type
 72        """Return a dictionary of destination configuration values."""
 73        raise NotImplementedError(
 74            f"The type '{type(self).__name__}' does not define an equivalent destination "
 75            "configuration."
 76        )
 77
 78    def __init__(self, **data: Any) -> None:  # noqa: ANN401
 79        """Initialize the cache and backends."""
 80        super().__init__(**data)
 81
 82        # Create a temporary processor to do the work of ensuring the schema exists
 83        temp_processor = self._sql_processor_class(
 84            sql_config=self,
 85            catalog_provider=CatalogProvider(ConfiguredAirbyteCatalog(streams=[])),
 86            state_writer=StdOutStateWriter(),
 87            temp_dir=self.cache_dir,
 88            temp_file_cleanup=self.cleanup,
 89        )
 90        temp_processor._ensure_schema_exists()  # noqa: SLF001  # Accessing non-public member
 91
 92        # Initialize the catalog and state backends
 93        self._catalog_backend = SqlCatalogBackend(
 94            engine=self.get_sql_engine(),
 95            table_prefix=self.table_prefix or "",
 96        )
 97        self._state_backend = SqlStateBackend(
 98            engine=self.get_sql_engine(),
 99            table_prefix=self.table_prefix or "",
100        )
101
102        # Now we can create the SQL read processor
103        self._read_processor = self._sql_processor_class(
104            sql_config=self,
105            catalog_provider=self._catalog_backend.get_full_catalog_provider(),
106            state_writer=StdOutStateWriter(),  # Shouldn't be needed for the read-only processor
107            temp_dir=self.cache_dir,
108            temp_file_cleanup=self.cleanup,
109        )
110
111    @property
112    def config_hash(self) -> str | None:
113        """Return a hash of the cache configuration.
114
115        This is the same as the SQLConfig hash from the superclass.
116        """
117        return super(SqlConfig, self).config_hash
118
119    def execute_sql(self, sql: str | list[str]) -> None:
120        """Execute one or more SQL statements against the cache's SQL backend.
121
122        If multiple SQL statements are given, they are executed in order,
123        within the same transaction.
124
125        This method is useful for creating tables, indexes, and other
126        schema objects in the cache. It does not return any results and it
127        automatically closes the connection after executing all statements.
128
129        This method is not intended for querying data. For that, use the `get_records`
130        method - or for a low-level interface, use the `get_sql_engine` method.
131
132        If any of the statements fail, the transaction is canceled and an exception
133        is raised. Most databases will rollback the transaction in this case.
134        """
135        if isinstance(sql, str):
136            # Coerce to a list if a single string is given
137            sql = [sql]
138
139        with self.processor.get_sql_connection() as connection:
140            for sql_statement in sql:
141                connection.execute(text(sql_statement))
142
143    @final
144    @property
145    def processor(self) -> SqlProcessorBase:
146        """Return the SQL processor instance."""
147        return self._read_processor
148
149    def get_record_processor(
150        self,
151        source_name: str,
152        catalog_provider: CatalogProvider,
153        state_writer: StateWriterBase | None = None,
154    ) -> SqlProcessorBase:
155        """Return a record processor for the specified source name and catalog.
156
157        We first register the source and its catalog with the catalog manager. Then we create a new
158        SQL processor instance with (only) the given input catalog.
159
160        For the state writer, we use a state writer which stores state in an internal SQL table.
161        """
162        # First register the source and catalog into durable storage. This is necessary to ensure
163        # that we can later retrieve the catalog information.
164        self.register_source(
165            source_name=source_name,
166            incoming_source_catalog=catalog_provider.configured_catalog,
167            stream_names=set(catalog_provider.stream_names),
168        )
169
170        # Next create a new SQL processor instance with the given catalog - and a state writer
171        # that writes state to the internal SQL table and associates with the given source name.
172        return self._sql_processor_class(
173            sql_config=self,
174            catalog_provider=catalog_provider,
175            state_writer=state_writer or self.get_state_writer(source_name=source_name),
176            temp_dir=self.cache_dir,
177            temp_file_cleanup=self.cleanup,
178        )
179
180    # Read methods:
181
182    def get_records(
183        self,
184        stream_name: str,
185    ) -> CachedDataset:
186        """Uses SQLAlchemy to select all rows from the table."""
187        return CachedDataset(self, stream_name)
188
189    def get_pandas_dataframe(
190        self,
191        stream_name: str,
192    ) -> pd.DataFrame:
193        """Return a Pandas data frame with the stream's data."""
194        table_name = self._read_processor.get_sql_table_name(stream_name)
195        engine = self.get_sql_engine()
196        return pd.read_sql_table(table_name, engine, schema=self.schema_name)
197
198    def get_arrow_dataset(
199        self,
200        stream_name: str,
201        *,
202        max_chunk_size: int = DEFAULT_ARROW_MAX_CHUNK_SIZE,
203    ) -> ds.Dataset:
204        """Return an Arrow Dataset with the stream's data."""
205        table_name = self._read_processor.get_sql_table_name(stream_name)
206        engine = self.get_sql_engine()
207
208        # Read the table in chunks to handle large tables which does not fits in memory
209        pandas_chunks = pd.read_sql_table(
210            table_name=table_name,
211            con=engine,
212            schema=self.schema_name,
213            chunksize=max_chunk_size,
214        )
215
216        arrow_batches_list = []
217        arrow_schema = None
218
219        for pandas_chunk in pandas_chunks:
220            if arrow_schema is None:
221                # Initialize the schema with the first chunk
222                arrow_schema = pa.Schema.from_pandas(pandas_chunk)
223
224            # Convert each pandas chunk to an Arrow Table
225            arrow_table = pa.RecordBatch.from_pandas(pandas_chunk, schema=arrow_schema)
226            arrow_batches_list.append(arrow_table)
227
228        return ds.dataset(arrow_batches_list)
229
230    @final
231    @property
232    def streams(self) -> dict[str, CachedDataset]:
233        """Return a temporary table name."""
234        result = {}
235        stream_names = set(self._catalog_backend.stream_names)
236
237        for stream_name in stream_names:
238            result[stream_name] = CachedDataset(self, stream_name)
239
240        return result
241
242    @final
243    def __len__(self) -> int:
244        """Gets the number of streams."""
245        return len(self._catalog_backend.stream_names)
246
247    @final
248    def __bool__(self) -> bool:
249        """Always True.
250
251        This is needed so that caches with zero streams are not falsey (None-like).
252        """
253        return True
254
255    def get_state_provider(
256        self,
257        source_name: str,
258        *,
259        refresh: bool = True,
260        destination_name: str | None = None,
261    ) -> StateProviderBase:
262        """Return a state provider for the specified source name."""
263        return self._state_backend.get_state_provider(
264            source_name=source_name,
265            table_prefix=self.table_prefix or "",
266            refresh=refresh,
267            destination_name=destination_name,
268        )
269
270    def get_state_writer(
271        self,
272        source_name: str,
273        destination_name: str | None = None,
274    ) -> StateWriterBase:
275        """Return a state writer for the specified source name.
276
277        If syncing to the cache, `destination_name` should be `None`.
278        If syncing to a destination, `destination_name` should be the destination name.
279        """
280        return self._state_backend.get_state_writer(
281            source_name=source_name,
282            destination_name=destination_name,
283        )
284
285    def register_source(
286        self,
287        source_name: str,
288        incoming_source_catalog: ConfiguredAirbyteCatalog,
289        stream_names: set[str],
290    ) -> None:
291        """Register the source name and catalog."""
292        self._catalog_backend.register_source(
293            source_name=source_name,
294            incoming_source_catalog=incoming_source_catalog,
295            incoming_stream_names=stream_names,
296        )
297
298    def create_source_tables(
299        self,
300        source: Source,
301        streams: Literal["*"] | list[str] | None = None,
302    ) -> None:
303        """Create tables in the cache for the provided source if they do not exist already.
304
305        Tables are created based upon the Source's catalog.
306
307        Args:
308            source: The source to create tables for.
309            streams: Stream names to create tables for. If None, use the Source's selected_streams
310                or "*" if neither is set. If "*", all available streams will be used.
311        """
312        if streams is None:
313            streams = source.get_selected_streams() or "*"
314
315        catalog_provider = CatalogProvider(source.get_configured_catalog(streams=streams))
316
317        # Register the incoming source catalog
318        self.register_source(
319            source_name=source.name,
320            incoming_source_catalog=catalog_provider.configured_catalog,
321            stream_names=set(catalog_provider.stream_names),
322        )
323
324        # Ensure schema exists
325        self.processor._ensure_schema_exists()  # noqa: SLF001  # Accessing non-public member
326
327        # Create tables for each stream if they don't exist
328        for stream_name in catalog_provider.stream_names:
329            self.processor._ensure_final_table_exists(  # noqa: SLF001
330                stream_name=stream_name,
331                create_if_missing=True,
332            )
333
334    def __getitem__(self, stream: str) -> CachedDataset:
335        """Return a dataset by stream name."""
336        return self.streams[stream]
337
338    def __contains__(self, stream: str) -> bool:
339        """Return whether a stream is in the cache."""
340        return stream in (self._catalog_backend.stream_names)
341
342    def __iter__(  # type: ignore [override]  # Overriding Pydantic model method
343        self,
344    ) -> Iterator[tuple[str, Any]]:
345        """Iterate over the streams in the cache."""
346        return ((name, dataset) for name, dataset in self.streams.items())
347
348    def _write_airbyte_message_stream(
349        self,
350        stdin: IO[str] | AirbyteMessageIterator,
351        *,
352        catalog_provider: CatalogProvider,
353        write_strategy: WriteStrategy,
354        state_writer: StateWriterBase | None = None,
355        progress_tracker: ProgressTracker,
356    ) -> None:
357        """Read from the connector and write to the cache."""
358        cache_processor = self.get_record_processor(
359            source_name=self.name,
360            catalog_provider=catalog_provider,
361            state_writer=state_writer,
362        )
363        cache_processor.process_airbyte_messages(
364            messages=stdin,
365            write_strategy=write_strategy,
366            progress_tracker=progress_tracker,
367        )
368        progress_tracker.log_cache_processing_complete()

Base configuration for a cache.

Caches inherit from the matching SqlConfig class, which provides the SQL config settings and basic connectivity to the SQL database.

The cache is responsible for managing the state of the data synced to the cache, including the stream catalog and stream state. The cache also provides the mechanism to read and write data to the SQL backend specified in the SqlConfig class.

CacheBase(**data: Any)
 78    def __init__(self, **data: Any) -> None:  # noqa: ANN401
 79        """Initialize the cache and backends."""
 80        super().__init__(**data)
 81
 82        # Create a temporary processor to do the work of ensuring the schema exists
 83        temp_processor = self._sql_processor_class(
 84            sql_config=self,
 85            catalog_provider=CatalogProvider(ConfiguredAirbyteCatalog(streams=[])),
 86            state_writer=StdOutStateWriter(),
 87            temp_dir=self.cache_dir,
 88            temp_file_cleanup=self.cleanup,
 89        )
 90        temp_processor._ensure_schema_exists()  # noqa: SLF001  # Accessing non-public member
 91
 92        # Initialize the catalog and state backends
 93        self._catalog_backend = SqlCatalogBackend(
 94            engine=self.get_sql_engine(),
 95            table_prefix=self.table_prefix or "",
 96        )
 97        self._state_backend = SqlStateBackend(
 98            engine=self.get_sql_engine(),
 99            table_prefix=self.table_prefix or "",
100        )
101
102        # Now we can create the SQL read processor
103        self._read_processor = self._sql_processor_class(
104            sql_config=self,
105            catalog_provider=self._catalog_backend.get_full_catalog_provider(),
106            state_writer=StdOutStateWriter(),  # Shouldn't be needed for the read-only processor
107            temp_dir=self.cache_dir,
108            temp_file_cleanup=self.cleanup,
109        )

Initialize the cache and backends.

cache_dir: pathlib.Path

The directory to store the cache in.

cleanup: bool

Whether to clean up the cache after use.

paired_destination_name: ClassVar[str | None] = None
paired_destination_config_class: ClassVar[type | None] = None
paired_destination_config: Union[Any, dict[str, Any]]
70    @property
71    def paired_destination_config(self) -> Any | dict[str, Any]:  # noqa: ANN401  # Allow Any return type
72        """Return a dictionary of destination configuration values."""
73        raise NotImplementedError(
74            f"The type '{type(self).__name__}' does not define an equivalent destination "
75            "configuration."
76        )

Return a dictionary of destination configuration values.

config_hash: str | None
111    @property
112    def config_hash(self) -> str | None:
113        """Return a hash of the cache configuration.
114
115        This is the same as the SQLConfig hash from the superclass.
116        """
117        return super(SqlConfig, self).config_hash

Return a hash of the cache configuration.

This is the same as the SQLConfig hash from the superclass.

def execute_sql(self, sql: str | list[str]) -> None:
119    def execute_sql(self, sql: str | list[str]) -> None:
120        """Execute one or more SQL statements against the cache's SQL backend.
121
122        If multiple SQL statements are given, they are executed in order,
123        within the same transaction.
124
125        This method is useful for creating tables, indexes, and other
126        schema objects in the cache. It does not return any results and it
127        automatically closes the connection after executing all statements.
128
129        This method is not intended for querying data. For that, use the `get_records`
130        method - or for a low-level interface, use the `get_sql_engine` method.
131
132        If any of the statements fail, the transaction is canceled and an exception
133        is raised. Most databases will rollback the transaction in this case.
134        """
135        if isinstance(sql, str):
136            # Coerce to a list if a single string is given
137            sql = [sql]
138
139        with self.processor.get_sql_connection() as connection:
140            for sql_statement in sql:
141                connection.execute(text(sql_statement))

Execute one or more SQL statements against the cache's SQL backend.

If multiple SQL statements are given, they are executed in order, within the same transaction.

This method is useful for creating tables, indexes, and other schema objects in the cache. It does not return any results and it automatically closes the connection after executing all statements.

This method is not intended for querying data. For that, use the get_records method - or for a low-level interface, use the get_sql_engine method.

If any of the statements fail, the transaction is canceled and an exception is raised. Most databases will rollback the transaction in this case.

processor: airbyte.shared.sql_processor.SqlProcessorBase
143    @final
144    @property
145    def processor(self) -> SqlProcessorBase:
146        """Return the SQL processor instance."""
147        return self._read_processor

Return the SQL processor instance.

def get_record_processor( self, source_name: str, catalog_provider: airbyte.shared.catalog_providers.CatalogProvider, state_writer: airbyte.shared.state_writers.StateWriterBase | None = None) -> airbyte.shared.sql_processor.SqlProcessorBase:
149    def get_record_processor(
150        self,
151        source_name: str,
152        catalog_provider: CatalogProvider,
153        state_writer: StateWriterBase | None = None,
154    ) -> SqlProcessorBase:
155        """Return a record processor for the specified source name and catalog.
156
157        We first register the source and its catalog with the catalog manager. Then we create a new
158        SQL processor instance with (only) the given input catalog.
159
160        For the state writer, we use a state writer which stores state in an internal SQL table.
161        """
162        # First register the source and catalog into durable storage. This is necessary to ensure
163        # that we can later retrieve the catalog information.
164        self.register_source(
165            source_name=source_name,
166            incoming_source_catalog=catalog_provider.configured_catalog,
167            stream_names=set(catalog_provider.stream_names),
168        )
169
170        # Next create a new SQL processor instance with the given catalog - and a state writer
171        # that writes state to the internal SQL table and associates with the given source name.
172        return self._sql_processor_class(
173            sql_config=self,
174            catalog_provider=catalog_provider,
175            state_writer=state_writer or self.get_state_writer(source_name=source_name),
176            temp_dir=self.cache_dir,
177            temp_file_cleanup=self.cleanup,
178        )

Return a record processor for the specified source name and catalog.

We first register the source and its catalog with the catalog manager. Then we create a new SQL processor instance with (only) the given input catalog.

For the state writer, we use a state writer which stores state in an internal SQL table.

def get_records(self, stream_name: str) -> airbyte.CachedDataset:
182    def get_records(
183        self,
184        stream_name: str,
185    ) -> CachedDataset:
186        """Uses SQLAlchemy to select all rows from the table."""
187        return CachedDataset(self, stream_name)

Uses SQLAlchemy to select all rows from the table.

def get_pandas_dataframe(self, stream_name: str) -> pandas.core.frame.DataFrame:
189    def get_pandas_dataframe(
190        self,
191        stream_name: str,
192    ) -> pd.DataFrame:
193        """Return a Pandas data frame with the stream's data."""
194        table_name = self._read_processor.get_sql_table_name(stream_name)
195        engine = self.get_sql_engine()
196        return pd.read_sql_table(table_name, engine, schema=self.schema_name)

Return a Pandas data frame with the stream's data.

def get_arrow_dataset( self, stream_name: str, *, max_chunk_size: int = 100000) -> pyarrow._dataset.Dataset:
198    def get_arrow_dataset(
199        self,
200        stream_name: str,
201        *,
202        max_chunk_size: int = DEFAULT_ARROW_MAX_CHUNK_SIZE,
203    ) -> ds.Dataset:
204        """Return an Arrow Dataset with the stream's data."""
205        table_name = self._read_processor.get_sql_table_name(stream_name)
206        engine = self.get_sql_engine()
207
208        # Read the table in chunks to handle large tables which does not fits in memory
209        pandas_chunks = pd.read_sql_table(
210            table_name=table_name,
211            con=engine,
212            schema=self.schema_name,
213            chunksize=max_chunk_size,
214        )
215
216        arrow_batches_list = []
217        arrow_schema = None
218
219        for pandas_chunk in pandas_chunks:
220            if arrow_schema is None:
221                # Initialize the schema with the first chunk
222                arrow_schema = pa.Schema.from_pandas(pandas_chunk)
223
224            # Convert each pandas chunk to an Arrow Table
225            arrow_table = pa.RecordBatch.from_pandas(pandas_chunk, schema=arrow_schema)
226            arrow_batches_list.append(arrow_table)
227
228        return ds.dataset(arrow_batches_list)

Return an Arrow Dataset with the stream's data.

streams: dict[str, airbyte.CachedDataset]
230    @final
231    @property
232    def streams(self) -> dict[str, CachedDataset]:
233        """Return a temporary table name."""
234        result = {}
235        stream_names = set(self._catalog_backend.stream_names)
236
237        for stream_name in stream_names:
238            result[stream_name] = CachedDataset(self, stream_name)
239
240        return result

Return a temporary table name.

def get_state_provider( self, source_name: str, *, refresh: bool = True, destination_name: str | None = None) -> airbyte.shared.state_providers.StateProviderBase:
255    def get_state_provider(
256        self,
257        source_name: str,
258        *,
259        refresh: bool = True,
260        destination_name: str | None = None,
261    ) -> StateProviderBase:
262        """Return a state provider for the specified source name."""
263        return self._state_backend.get_state_provider(
264            source_name=source_name,
265            table_prefix=self.table_prefix or "",
266            refresh=refresh,
267            destination_name=destination_name,
268        )

Return a state provider for the specified source name.

def get_state_writer( self, source_name: str, destination_name: str | None = None) -> airbyte.shared.state_writers.StateWriterBase:
270    def get_state_writer(
271        self,
272        source_name: str,
273        destination_name: str | None = None,
274    ) -> StateWriterBase:
275        """Return a state writer for the specified source name.
276
277        If syncing to the cache, `destination_name` should be `None`.
278        If syncing to a destination, `destination_name` should be the destination name.
279        """
280        return self._state_backend.get_state_writer(
281            source_name=source_name,
282            destination_name=destination_name,
283        )

Return a state writer for the specified source name.

If syncing to the cache, destination_name should be None. If syncing to a destination, destination_name should be the destination name.

def register_source( self, source_name: str, incoming_source_catalog: airbyte_protocol.models.airbyte_protocol.ConfiguredAirbyteCatalog, stream_names: set[str]) -> None:
285    def register_source(
286        self,
287        source_name: str,
288        incoming_source_catalog: ConfiguredAirbyteCatalog,
289        stream_names: set[str],
290    ) -> None:
291        """Register the source name and catalog."""
292        self._catalog_backend.register_source(
293            source_name=source_name,
294            incoming_source_catalog=incoming_source_catalog,
295            incoming_stream_names=stream_names,
296        )

Register the source name and catalog.

def create_source_tables( self, source: airbyte.Source, streams: Union[list[str], Literal['*'], NoneType] = None) -> None:
298    def create_source_tables(
299        self,
300        source: Source,
301        streams: Literal["*"] | list[str] | None = None,
302    ) -> None:
303        """Create tables in the cache for the provided source if they do not exist already.
304
305        Tables are created based upon the Source's catalog.
306
307        Args:
308            source: The source to create tables for.
309            streams: Stream names to create tables for. If None, use the Source's selected_streams
310                or "*" if neither is set. If "*", all available streams will be used.
311        """
312        if streams is None:
313            streams = source.get_selected_streams() or "*"
314
315        catalog_provider = CatalogProvider(source.get_configured_catalog(streams=streams))
316
317        # Register the incoming source catalog
318        self.register_source(
319            source_name=source.name,
320            incoming_source_catalog=catalog_provider.configured_catalog,
321            stream_names=set(catalog_provider.stream_names),
322        )
323
324        # Ensure schema exists
325        self.processor._ensure_schema_exists()  # noqa: SLF001  # Accessing non-public member
326
327        # Create tables for each stream if they don't exist
328        for stream_name in catalog_provider.stream_names:
329            self.processor._ensure_final_table_exists(  # noqa: SLF001
330                stream_name=stream_name,
331                create_if_missing=True,
332            )

Create tables in the cache for the provided source if they do not exist already.

Tables are created based upon the Source's catalog.

Arguments:
  • source: The source to create tables for.
  • streams: Stream names to create tables for. If None, use the Source's selected_streams or "" if neither is set. If "", all available streams will be used.
model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
328def init_private_attributes(self: BaseModel, context: Any, /) -> None:
329    """This function is meant to behave like a BaseModel method to initialise private attributes.
330
331    It takes context as an argument since that's what pydantic-core passes when calling it.
332
333    Args:
334        self: The BaseModel instance.
335        context: The context.
336    """
337    if getattr(self, '__pydantic_private__', None) is None:
338        pydantic_private = {}
339        for name, private_attr in self.__private_attributes__.items():
340            default = private_attr.get_default()
341            if default is not PydanticUndefined:
342                pydantic_private[name] = default
343        object_setattr(self, '__pydantic_private__', pydantic_private)

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that's what pydantic-core passes when calling it.

Arguments:
  • self: The BaseModel instance.
  • context: The context.
Inherited Members
airbyte.shared.sql_processor.SqlConfig
schema_name
table_prefix
get_sql_alchemy_url
get_database_name
get_create_table_extra_clauses
get_sql_engine
get_vendor_client
pydantic.main.BaseModel
model_extra
model_fields_set
model_construct
model_copy
model_dump
model_dump_json
model_json_schema
model_parametrized_name
model_rebuild
model_validate
model_validate_json
model_validate_strings
dict
json
parse_obj
parse_raw
parse_file
from_orm
construct
copy
schema
schema_json
validate
update_forward_refs
model_fields
model_computed_fields
airbyte._writers.base.AirbyteWriterInterface
name
class DuckDBCache(airbyte._processors.sql.duckdb.DuckDBConfig, airbyte.caches.CacheBase):
44class DuckDBCache(DuckDBConfig, CacheBase):
45    """A DuckDB cache."""
46
47    _sql_processor_class: ClassVar[type[SqlProcessorBase]] = DuckDBSqlProcessor
48
49    paired_destination_name: ClassVar[str | None] = "destination-duckdb"
50    paired_destination_config_class: ClassVar[type | None] = DestinationDuckdb
51
52    @property
53    def paired_destination_config(self) -> DestinationDuckdb:
54        """Return a dictionary of destination configuration values."""
55        return duckdb_cache_to_destination_configuration(cache=self)

A DuckDB cache.

paired_destination_name: ClassVar[str | None] = 'destination-duckdb'
paired_destination_config_class: ClassVar[type | None] = <class 'airbyte_api.models.destination_duckdb.DestinationDuckdb'>
paired_destination_config: airbyte_api.models.destination_duckdb.DestinationDuckdb
52    @property
53    def paired_destination_config(self) -> DestinationDuckdb:
54        """Return a dictionary of destination configuration values."""
55        return duckdb_cache_to_destination_configuration(cache=self)

Return a dictionary of destination configuration values.

model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
122                    def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None:
123                        """We need to both initialize private attributes and call the user-defined model_post_init
124                        method.
125                        """
126                        init_private_attributes(self, context)
127                        original_model_post_init(self, context)

We need to both initialize private attributes and call the user-defined model_post_init method.

Inherited Members
CacheBase
CacheBase
cache_dir
cleanup
config_hash
execute_sql
processor
get_record_processor
get_records
get_pandas_dataframe
get_arrow_dataset
streams
get_state_provider
get_state_writer
register_source
create_source_tables
airbyte._processors.sql.duckdb.DuckDBConfig
db_path
schema_name
get_sql_alchemy_url
get_database_name
get_sql_engine
airbyte.shared.sql_processor.SqlConfig
table_prefix
get_create_table_extra_clauses
get_vendor_client
pydantic.main.BaseModel
model_extra
model_fields_set
model_construct
model_copy
model_dump
model_dump_json
model_json_schema
model_parametrized_name
model_rebuild
model_validate
model_validate_json
model_validate_strings
dict
json
parse_obj
parse_raw
parse_file
from_orm
construct
copy
schema
schema_json
validate
update_forward_refs
model_fields
model_computed_fields
airbyte._writers.base.AirbyteWriterInterface
name
72class MotherDuckCache(MotherDuckConfig, DuckDBCache):
73    """Cache that uses MotherDuck for external persistent storage."""
74
75    _sql_processor_class: ClassVar[type[SqlProcessorBase]] = MotherDuckSqlProcessor
76
77    paired_destination_name: ClassVar[str | None] = "destination-bigquery"
78    paired_destination_config_class: ClassVar[type | None] = DestinationDuckdb
79
80    @property
81    def paired_destination_config(self) -> DestinationDuckdb:
82        """Return a dictionary of destination configuration values."""
83        return motherduck_cache_to_destination_configuration(cache=self)

Cache that uses MotherDuck for external persistent storage.

paired_destination_name: ClassVar[str | None] = 'destination-bigquery'
paired_destination_config_class: ClassVar[type | None] = <class 'airbyte_api.models.destination_duckdb.DestinationDuckdb'>
paired_destination_config: airbyte_api.models.destination_duckdb.DestinationDuckdb
80    @property
81    def paired_destination_config(self) -> DestinationDuckdb:
82        """Return a dictionary of destination configuration values."""
83        return motherduck_cache_to_destination_configuration(cache=self)

Return a dictionary of destination configuration values.

model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
122                    def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None:
123                        """We need to both initialize private attributes and call the user-defined model_post_init
124                        method.
125                        """
126                        init_private_attributes(self, context)
127                        original_model_post_init(self, context)

We need to both initialize private attributes and call the user-defined model_post_init method.

Inherited Members
CacheBase
CacheBase
cache_dir
cleanup
config_hash
execute_sql
processor
get_record_processor
get_records
get_pandas_dataframe
get_arrow_dataset
streams
get_state_provider
get_state_writer
register_source
create_source_tables
airbyte.caches.motherduck.MotherDuckConfig
database
api_key
db_path
get_sql_alchemy_url
get_database_name
airbyte._processors.sql.duckdb.DuckDBConfig
schema_name
get_sql_engine
airbyte.shared.sql_processor.SqlConfig
table_prefix
get_create_table_extra_clauses
get_vendor_client
pydantic.main.BaseModel
model_extra
model_fields_set
model_construct
model_copy
model_dump
model_dump_json
model_json_schema
model_parametrized_name
model_rebuild
model_validate
model_validate_json
model_validate_strings
dict
json
parse_obj
parse_raw
parse_file
from_orm
construct
copy
schema
schema_json
validate
update_forward_refs
model_fields
model_computed_fields
airbyte._writers.base.AirbyteWriterInterface
name
class PostgresCache(airbyte._processors.sql.postgres.PostgresConfig, airbyte.caches.CacheBase):
38class PostgresCache(PostgresConfig, CacheBase):
39    """Configuration for the Postgres cache.
40
41    Also inherits config from the JsonlWriter, which is responsible for writing files to disk.
42    """
43
44    _sql_processor_class: ClassVar[type[SqlProcessorBase]] = PostgresSqlProcessor
45
46    paired_destination_name: ClassVar[str | None] = "destination-bigquery"
47    paired_destination_config_class: ClassVar[type | None] = DestinationPostgres
48
49    @property
50    def paired_destination_config(self) -> DestinationPostgres:
51        """Return a dictionary of destination configuration values."""
52        return postgres_cache_to_destination_configuration(cache=self)
53
54    def clone_as_cloud_destination_config(self) -> DestinationPostgres:
55        """Return a DestinationPostgres instance with the same configuration."""
56        return DestinationPostgres(
57            host=self.host,
58            port=self.port,
59            username=self.username,
60            password=self.password,
61            database=self.database,
62        )

Configuration for the Postgres cache.

Also inherits config from the JsonlWriter, which is responsible for writing files to disk.

paired_destination_name: ClassVar[str | None] = 'destination-bigquery'
paired_destination_config_class: ClassVar[type | None] = <class 'airbyte_api.models.destination_postgres.DestinationPostgres'>
paired_destination_config: airbyte_api.models.destination_postgres.DestinationPostgres
49    @property
50    def paired_destination_config(self) -> DestinationPostgres:
51        """Return a dictionary of destination configuration values."""
52        return postgres_cache_to_destination_configuration(cache=self)

Return a dictionary of destination configuration values.

def clone_as_cloud_destination_config(self) -> airbyte_api.models.destination_postgres.DestinationPostgres:
54    def clone_as_cloud_destination_config(self) -> DestinationPostgres:
55        """Return a DestinationPostgres instance with the same configuration."""
56        return DestinationPostgres(
57            host=self.host,
58            port=self.port,
59            username=self.username,
60            password=self.password,
61            database=self.database,
62        )

Return a DestinationPostgres instance with the same configuration.

model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
122                    def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None:
123                        """We need to both initialize private attributes and call the user-defined model_post_init
124                        method.
125                        """
126                        init_private_attributes(self, context)
127                        original_model_post_init(self, context)

We need to both initialize private attributes and call the user-defined model_post_init method.

Inherited Members
CacheBase
CacheBase
cache_dir
cleanup
config_hash
execute_sql
processor
get_record_processor
get_records
get_pandas_dataframe
get_arrow_dataset
streams
get_state_provider
get_state_writer
register_source
create_source_tables
airbyte._processors.sql.postgres.PostgresConfig
host
port
database
username
password
get_sql_alchemy_url
get_database_name
airbyte.shared.sql_processor.SqlConfig
schema_name
table_prefix
get_create_table_extra_clauses
get_sql_engine
get_vendor_client
pydantic.main.BaseModel
model_extra
model_fields_set
model_construct
model_copy
model_dump
model_dump_json
model_json_schema
model_parametrized_name
model_rebuild
model_validate
model_validate_json
model_validate_strings
dict
json
parse_obj
parse_raw
parse_file
from_orm
construct
copy
schema
schema_json
validate
update_forward_refs
model_fields
model_computed_fields
airbyte._writers.base.AirbyteWriterInterface
name
class SnowflakeCache(airbyte._processors.sql.snowflake.SnowflakeConfig, airbyte.caches.CacheBase):
37class SnowflakeCache(SnowflakeConfig, CacheBase):
38    """Configuration for the Snowflake cache."""
39
40    dedupe_mode: RecordDedupeMode = RecordDedupeMode.APPEND
41
42    _sql_processor_class: ClassVar[type[SqlProcessorBase]] = SnowflakeSqlProcessor
43
44    paired_destination_name: ClassVar[str | None] = "destination-bigquery"
45    paired_destination_config_class: ClassVar[type | None] = DestinationSnowflake
46
47    @property
48    def paired_destination_config(self) -> DestinationSnowflake:
49        """Return a dictionary of destination configuration values."""
50        return snowflake_cache_to_destination_configuration(cache=self)

Configuration for the Snowflake cache.

dedupe_mode: airbyte.shared.sql_processor.RecordDedupeMode
paired_destination_name: ClassVar[str | None] = 'destination-bigquery'
paired_destination_config_class: ClassVar[type | None] = <class 'airbyte_api.models.destination_snowflake.DestinationSnowflake'>
paired_destination_config: airbyte_api.models.destination_snowflake.DestinationSnowflake
47    @property
48    def paired_destination_config(self) -> DestinationSnowflake:
49        """Return a dictionary of destination configuration values."""
50        return snowflake_cache_to_destination_configuration(cache=self)

Return a dictionary of destination configuration values.

model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
122                    def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None:
123                        """We need to both initialize private attributes and call the user-defined model_post_init
124                        method.
125                        """
126                        init_private_attributes(self, context)
127                        original_model_post_init(self, context)

We need to both initialize private attributes and call the user-defined model_post_init method.

Inherited Members
CacheBase
CacheBase
cache_dir
cleanup
config_hash
execute_sql
processor
get_record_processor
get_records
get_pandas_dataframe
get_arrow_dataset
streams
get_state_provider
get_state_writer
register_source
create_source_tables
airbyte._processors.sql.snowflake.SnowflakeConfig
account
username
password
warehouse
database
role
schema_name
data_retention_time_in_days
get_create_table_extra_clauses
get_database_name
get_sql_alchemy_url
get_vendor_client
airbyte.shared.sql_processor.SqlConfig
table_prefix
get_sql_engine
pydantic.main.BaseModel
model_extra
model_fields_set
model_construct
model_copy
model_dump
model_dump_json
model_json_schema
model_parametrized_name
model_rebuild
model_validate
model_validate_json
model_validate_strings
dict
json
parse_obj
parse_raw
parse_file
from_orm
construct
copy
schema
schema_json
validate
update_forward_refs
model_fields
model_computed_fields
airbyte._writers.base.AirbyteWriterInterface
name